


many process algebras are de�ned by structural operational semantics (SOS) [34], this way of giving

semantics to programming and speci�cation languages has been a natural handle for proving results

for classes of languages. In particular, several formats for SOS rules have emerged in the literature

(see, e.g., [35, 13, 20, 19, 14, 37, 5, 40, 10]) and a wealth of properties that hold for all languages

speci�ed in terms of rules which �t these formats have been established. (In addition to the previous

references, the interested reader may wish to consult, e.g., [9, 33, 26, 38, 2, 4, 39, 11, 12, 15, 1] for

examples of this kind of metatheoretic results).

In [2] I gave a contribution to this line of research by presenting, together with B. Bloom and

F. Vaandrager, a procedure for converting any language de�nition in the GSOS format of Bloom,

Istrail and Meyer [13, 9] to a �nite complete equational axiom system which precisely characterizes

strong bisimulation of processes. Such a complete equational axiom system included, in general,

one in�nitary induction principle | essentially a reformulation of the Approximation Induction

Principle (AIP) [7, 6]. An in�nitary proof rule like AIP is indeed necessary to obtain completeness

for arbitrary GSOS systems because, as shown in [2], testing bisimulation over GSOS systems is

�

0

1

-complete.

However, it is well-known that AIP and other in�nitary proof rules are not necessary for the

axiomatization of, e.g., strong bisimulation over regular behaviours (see the classic references [29,

8, 31]). Thus it should be possible to �ne tune the methods of [2] to produce complete inference

systems for strong bisimulation over classes of GSOS systems that generate regular behaviours

which do not rely on in�nitary proof rules like AIP. This is the aim of this paper.

1.1 Results

In this paper, I give a procedure for extracting from a GSOS speci�cation that generates regular

processes a complete axiom system for strong bisimulation equivalence. This axiom system is

equational, except for one conditional equation, and does not rely on in�nitary proof rules.

First of all, following [1], I characterize a class of in�nitary GSOS speci�cations, obtained

by relaxing some of the �niteness constraints of the original format of Bloom, Istrail and Meyer
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of f(P ) is given by a �nite process graph. However, such an operation cannot be axiomatized in

�nitary fashion using the techniques of [2] because there is no upper bound on the number of

di�erent rules for it which have the same hypothesis. (See Proposition 5.10). Similarly, operations

that have no upper bound on the number of positive hypotheses for their arguments, i.e. antecedents

like x

a

i

! y in rule (1), do not lend themselves to a clean algebraic description using the methods of

[2]. (See Proposition 5.14).

However, for GSOS systems whose operations are de�ned by rules without negative hypotheses,

it is possible to give a reasonably aesthetic axiomatization of operations like the one given by

the rules (1). A revised strategy that can be used to axiomatize these operations is presented

in Section 7.1. When applied to the operation f described by the rules (1), the revised strategy

produces the following natural equations:

f(0) = 0

f(x+ y) = f(x) + f(y)

f(a

i

:x) =

X

1�j�i

a

j

:0 (a

i

2 Act)

A new class of in�nitary GSOS systems which a�ord a nice algebraic treatment emerges from this

study. I believe that this new class of in�nitary GSOS speci�cations has some independent interest,

and will form the basis for a general treatment of in�nitary GSOS languages which enjoy most of

the sanity properties of the original proposal of Bloom, Istrail and Meyer.

1.2 Outline of the Paper

The paper is organized as follows. Section 2 is devoted to a review of background material from

the theory of structural operational semantics and process algebras that will be needed in this

study. Section 3 introduces the class of regular in�nitary GSOS systems that will be axiomatized

in Section 5. This is a subclass of the in�nitary simple GSOS systems from [1] which a�ord a

clean algebraic treatment. Section 5 presents an adaptation of the techniques from



Let Var be a denumerable set of process variables ranged over by x; y. (For technical convenience,

I shall assume throughout that the set Var can always be extended). A signature � consists of a

set of operation symbols, disjoint from Var, together with a function arity that assigns a natural

number to each operation symbol. The set (�) of terms over � is the least set such that

� Each x 2 Var is a term.

� If f is an operation symbol of arity l, and P

1

; : : : ; P

l

are terms, then f(P

1

; : : : ; P

l

) is a term.

I shall use P;Q; : : : to range over terms and the symbol � for the relation of syntactic equality on

terms. T(�) is the set of closed terms over �, i.e., terms that do not contain variables. Constants,

i.e. terms of the form f(), will be abbreviated as f . A (closed) �-substitution is a mapping � from

the set of variables Var to the set of (closed) terms over �. The notation fP

1

=x

1

; : : : ; P

n

=x

n

g, where

the P

i

s are terms and the x

i

s are distinct variables, will often be used to denote the substitution

that maps each x

i

to P

i

, and leaves all the other variables unchanged.

A �-context C[~x] is a term in which at most the variables ~x appear. C[

~

P ] is C[~x] with x

i

replaced by P

i

wherever it occurs. In this paper, substitutions of open terms for variables will only

be used in the absence of binding operations. For this reason, I take the liberty of using this simple

de�nition of substitution, and omit the standard details of the formal de�nition.

Besides terms I have actions, elements of some given countable

1

set Act, which is ranged over

by a; b; c.

De�nition 2.1 (GSOS Rules and In�nitary GSOS Systems) Suppose � is a signature. A

GSOS rule � over � is an inference rule of the form

2

:

S

l

i=1

n

x

i

a

ij

! y

ij

j1 � j � m

i

o

[

S

l

i=1

n

x

i

b

ik

9 j1 � k � n

i

o

f(x

1

; : : : ; x

l

)

c

! C[



Meije [3], postulate an in�nite action set. In the setting of this paper, it will also be natural to

treat languages with a denumerable set of operations. (See, e.g., Section 4).

Intuitively, an in�nitary GSOS system gives a language, whose constructs are the operations in

the signature �

G

, together with a Plotkin-style structural operational semantics [34] for it de�ned

by the set of conditional rules R

G

. Informally, the intent of a GSOS rule is as follows. Suppose that

we are wondering whether f(

~

P ) is capable of taking a c-step. We look at each rule with principal

operation f and action c in turn. We inspect each positive antecedent x

i

a

ij

! y

ij

, checking if P

i

is

capable of taking an a

ij

-step for each j and if so calling the a

ij

-children Q

ij

. We also check the

negative antecedents; if P

i

is incapable of taking a b

ik

-step for each k. If so, then the rule �res and

f(

~

P )

c

! C[

~

P ;

~

Q]. Roughly, this means that the transition relation associated with an in�nitary

GSOS system, notation !

G

, is the one de�ned by structural induction on terms using the rules in

R

G

. This essentially ensures that a transition f(

~

P )

a

!

G

Q exists between the closed terms f(

~

P ) and

Q i� there exist a closed substitution �, and a rule for f whose antecedents hold when instantiated

with �, and whose instantiated target yields Q. The interested reader is referred to [13, 9] for the

details of the formal de�nition of !

G

.

As usual, the operational semantics for the closed





In order to obtain that graph(P ) is a �nite process graph for each closed term P , it is necessary

to impose restrictions on the class of in�nitary GSOS systems under consideration, ensuring that

the transition relation be �nitely branching and that the set of states reachable from P be �nite.

Finite branching of the transition relation !

G

is one of the basic



De�nition 3.4 A GSOS rule of the form (2) is simple i� C[







1. BISIM(RCCS) j= T

RCCS

;

2. T

RCCS

is complete for equality in Bisim(RCCS), i.e., for all P;Q 2 T(�

RCCS

),

Bisim(RCCS) j= P = Q) T

RCCS

` P = Q

Proof: (Sketch.) The soundness of T

RCCS

with respect to equality in Bisim(G), for G a disjoint

extension of RCCS, can be shown by adapting the well-known soundness proofs of the axioms with

respect to Bisim(RCCS). (See, e.g., [29, Proposition 4.4]). Here I shall concentrate on sketching the

strategy of the proof of completeness. This can be delivered in three steps:

� Step 1 : For each P 2 T(�

RCCS

), it is possible to prove a strong head normalization property

for T

RCCS

, namely

T

RCCS

` P =

X

n

a:Q j P

a

!

RCCS

Q

o

This statement can be easily shown by induction on the number of constants of the form

hx j Ei which do not occur within the scope of a pre�xing operation in P . (In fact the proof

only uses axioms (S1){(S4) and (Rec)).

� Step 2 : Following Milner [29, 31], one shows that if P
$

{{

RCCS

Q then P and Q T

RCCS

-

provably satisfy a common recursive speci�cation E = fx = P

x

j x 2 V

E

g in some variable

x

0

2 V

E

.

� Step 3 : Finally, using (RSP), it is possible to show that if P and Q T

RCCS

-provably satisfy

a common recursive speci�cation E in the variable x

0

2 V

E

, then T

RCCS

` P = Q.

2

In the reminder of this paper, I shall mimic the strategy used in the above proof to derive complete

inference systems for regular GSOS speci�cations that do not rely on an in�nitary conditional

equation like the AIP. The inference systems derived using the methods presented in the remainder

of this paper will be equational, apart from the conditional equation (RSP). The equational part of

the proof system will allow me to prove an analogue of the strong head normalization result stated

in step 1 of the proof of the previous proposition. This will require a variety of methods that will

be presented in the following section.

To conclude this section, I now present a result stating that, not surprisingly, one can safely

extend RCCS with regular operations while preser2999.7(equational,)-12999.4(apart)-12000.6(from)-11000.7(the)-12999.4(conditional)-14000.3(equaTj
20.63(e)-12999 )-1.01(ted)-14dS5ar



where reach(f(P

1

; : : : ; P

l

)) denotes the set

�

S

l

i=1

der(P

i

)

�

[ fg(R

1

; : : : ; R

n

) j f �

G

0

g and 81 � j � n 91 � i � l : R

j

2 der(P

i

)g

The claim then follows by (6), as the P

i

s have �nite derivatives by the inductive hypothesis, and

fg 2 �

G

0

j f �

G

0

gg is �nite because f is regular. 2

5 Axiomatizing Regular GSOS Operations

As mentioned in the previous section, the core of the derivation of complete inference systems for

regular GSOS systems will be the generation of a set of equations which allow one to prove an

analogue of the strong head normalization result stated in the proof of Proposition 4.3, viz., that

each closed term is provably equal to the sum of its initial derivatives. Following [2], I shall �rst

show how to axiomatize a class of well-behaved regular GSOS operations, the smooth operations

of [2]. Secondly, I shall extend these results to arbitrary regular GSOS operations.

5.1 The Axiomatization of Regular Smooth Operations

The following de�nition is from [2], where motivation and examples of smooth operations can be

found.

De�nition 5.1 A GSOS rule is smooth if it takes the form

n

x

i

a

i

! y

i

j



2. f distributes over + in its i-th argument, i.e.,

BISIM(G) j= f(x

1

; : : : ; x

i

+ y

i

; : : : ; x

l

) = f(x

1

; : : : ; x

i

; : : : ; x

l

) + f(x

1

; : : : ; y

i

; : : : ; x

l

) (9)

Proof: It is su�cient to prove (8), as (9) follows immediately from it. To this end, let G

0

be a

disjoint extension of G, and let P

1

; : : : ; P

l

and Q

i

, 1 � i � l, be closed terms over �

G

0
. Suppose

that f(P

1

; : : : ; P

i

+Q

i

; : : : ; P

l

)

a

!

G

0

Q. Then there exist a rule � for f of the form (7) and a closed

�

G

0
-substitution � such that

� �(x

h

) = P

h

, for all 1 � h � l such that h 6= i, and �(x

i

) = P

i

+Q

i

,

� Q � C[~x; ~y]�, and

� �(x

h

)

a

h

!

G

0

�(y

h

), for all h 2 I , and �(x

h

)

b

hk

9, for all h 2 K and 1 � k � n

h

.

As G

0

disjointly extends G, and f is an operation of G, it follows that � is a rule of G. By

the hypotheses of the lemma, I have that i 2and



De�nition 5.4 ([2]) A smooth operation f from an in�nitary GSOS system G is distinctive if, for

each argument i, either all rules for f test i positively or none of them does, and moreover for each

pair of di�erent rules for f there is an argument for which both rules have a positive antecedent,

but with a di�erent action.

The following lemma gives the so-called peeling laws. These are laws that can be used to reduce

the arguments that are tested negatively by a smooth and distinctive operation to a form in which

either action laws or inaction laws can be applied.

Lemma 5.5 (Peeling Laws) Suppose f is a distinctive smooth operation of a disjoint extension

G of FINTREE, with a rule � of the form

n

x

i

a

i

! y

i

ji 2 I

o

[

�

x

i

b

ij

9 ji 2 K; 1 � j � n

i

�

f(~x)

c

! C[~x; ~y]

Let k 2 K be such that x

k

does not occur in C[~x; ~y], and b 62 fb

kj

j1 � j � n

k

g. Take

P

i

�

8

>

<

>

:

a

i

y

i

i 2 I

bx

0

k

+ x

00

k

i = k

x

i

i 2 K ^ i 6= k

and Q

i

�

8

>

<

>

:

a

i

y

i

i 2 I

x

00

k

i = k

x

i

i 2 K ^ i 6= k

Then:

1. for every G

0

that disjointly extends G and every �

G

0
-substitution �,

f(

~

P )�

a

! S , f(

~

Q)�

a

! S (12)

for all a 2 Act and S 2 T(�

G

0

);

2. the equality f(

~

P ) = f(

~

Q) is valid in every G

0

that disjointly extends G, i.e.,

BISIM(G) j= f(

~

P ) = f(

~

Q) (13)

Proof: It is su�cient to prove the �rst statement as the second is an immediate corollary of it.

Let G

0

be a disjoint extension of G. Now note that, for any closed �

G

0

-substitution �, rule � �res

from f(

~

P )� i� it �res from f(

~

Q)�. By the distinctiveness of f , � is the only rule that can possibly

�re from these terms. Moreover, as x

k

does not occur in C[~x; ~y], it is easy to check that if � �res,

then the targets of the matching transitions from f(

~

P )� and f(

~

Q)� are syntactically equal. 2

Lemma 5.6 (Action Laws) Suppose f is a distinctive smooth operation of a disjoint extension

G of FINTREE, with a rule � of the form

n

x

i

a

i

! y

i

ji 2 I

o

[

�

x

i

b

ij

9 ji 2 K; 1 � j � n

i

�

f(~x)

c

! C[~x; ~y]

Let

P

i

�

8

>

<

>

:

a

i

y

i

i 2 I

0 i 2 K ^ n

i

> 0

x

i

otherwise

Then:

14





Then BISIM(G) j= T , and for each P 2 T(�[ �

RCCS

)

T ` P =

X

n

a:Q j P

a

!

G

Q

o

Proof: The fact that BISIM(G) j= T follows immediately from the previous lemmas. I now show

that for each P 2 T(� [ �

RCCS

)

T ` P =

X

n

a:Q j P

a

!

G

Q

o

The proof will be by structural induction on P . I proceed by a case analysis on the possible forms

P can take. The cases P � 0 and P � a:Q are trivial, using the fact that G disjointly extends

RCCS.

Case P � hx j Ei. First of all, note that for every guarded FINTREE term P and recursive

speci�cation E the following holds:

(S1){(S4) ` hP j Ei =

X

fa:hQ j Ei j (a;Q) 2 init(P )g

The claim then follows by axiom (Rec) and the fact that G disjointly extends RCCS.

Case P � Q+R. Immediate by applying the inductive hypothesis to Q and R.

Case P � f(P

1

; : : : ; P

l

) for some f 2 �. By induction, T ` P

i

=

P

n

a:Q j P

i

a

!

G

Q

o

for each

1 � i � l. I shall now prove that T ` P =

P

n

a:Q j P

a

!

G

Q

o

by a further induction on the

combined sizes of the P

i

s. There are three main cases to examine.

Case 1. There is an argument i that is tested positively by f and for which P

i

is of the form

P

0

i

+ P

00

i

. As f is distinctive, all rules for f test i positively. In this case we can apply

one of the distributivity laws (9) to infer

T ` f(P

1

; : : : ; P

0

i

+ P

00

i

; : : : ; P

l

) = f(P

1

; : : : ; P

0

i

; : : : ; P

l

) + f(P

1

; : : : ; P

00

i

; : : : ; P

l

)

The sub-inductive hypothesis now gives that

T ` f(P

1

; : : : ; P

0

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P

0

i

; : : : ; P

l

)

a

!

G

Q

o

T ` f(P

1

; : : : ; P

00

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P

00

i

; : : : ; P

l

)

a

!

G

Q

o

Thus, by (8), it follows that

T ` f(P

1

; : : : ; P

0

i

+ P

00

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P



Case 3.1. For each rule for f with positive trigger he

1

; : : : ; e

l

i, there is an i that is

tested positively such that e

i

6= a

i

. Then T contains an inaction law f(

~

Q) = 0,

where Q

k

� a

k

x

k

if k is tested positively, and Q

k



3. for all ~x of length l,

BISIM(G

�

� RCCS) j= f(~x) = f

1

(~x) + � � �+ f

n

(~x) (17)

Proof: Assume that f is an l-ary smooth and discarding operation of G

0

. I shall show how to

partition the set R of rules for f in R

G

into sets R

1

; : : : ; R

n

in such a way that that, for all

1 � i � n, f is distinctive in the in�nitary GSOS system obtained from G by removing all the

rules in R � R

i

. First of all, partition the set of rules for f into sets R

1

; : : : ; R

m

, where, for each

1 � j � m and �; �

0

2 R, �; �

0

2 R

j

i� they test the same arguments positively. Note that, even if

R were denumerable, m � 2



Take P � a

n+1

:0. Then f(P )

a

l

!

G

0

0 for each 1 � l � n+ 1. As f(P )

$

{{

G

0

f

1

(P ) + � � �+ f

n

(P ), it

must be the case that, for some 1 � i � n and 1 � j < h � n



2. BISIM(G) j= P = Q.

Proposition 5.13 Suppose G is a regular GSOS system containing an operation f with arity l

that is not both smooth and discarding. Then there exists a regular disjoint extension G

0

of G with

a smooth and discarding operation f

0

not occurring in RCCS with arity l

0

(possibly di�erent from

l), and there exist vectors ~z of l distinct variables, and ~v of l

0

variables in ~z (possibly repeated),

such that:

1. for every disjoint extension G

00

of G

0

and �

G

00

-substitution �,

f(~z)�

a

!

G

00
Q , f

0

(~v)�

a

!

G

00
Q (18)

for all a 2 Act and Q 2 T(�

G

00
);

2. the equation f(~z) = f

0

(~v) is valid in any disjoint extension of G

0

, i.e.,

BISIM(G

0

) j= f(~z) = f

0

(~v) (19)

Proof: (Following the proof of [2, Lemma 4.13]). In order to determine the arity of f

0

I �rst

quantify the degree in which f is non-smooth and non-discarding. For � a simple GSOS rule of the

form (2), and 1 � i � l, the nastiness factor of � and i is de�ned as

m

i

if n

i

= 0 and x

i

does not occur in the target

m

i

+ 1 if n

i

> 0 and x

i

does not occur in the target, or n

i

= 0 and x

i

occurs in the target

m

i

+ 2 if n

i

> 0 and x

i

occurs in the target

Note that, as f is a regular operation, the nastiness factor of � and i is less than or equal to m

(f;i)

+2

for all �, where m

(f;i)

is the maximum number of positive antecedents for i in the rules for f . The

nastiness factor of f and i, notation N(f; i), is then de�ned as the maximum over all rules � for

f of the nastiness factor of f and i. Let l

0

=

P

l

i=1

N(f; i) and let f

0

be a fresh



Proposition 5.14 Let Act = fa

i

j i � 1g be a denumerable set of actions, and G be an in�nitary

GSOS system which disjointly extends FINTREE comprising a very simple unary operation g, with

rules (one such rule for each i 2 !):

n

x

a

j

! y

j

j 1 � j � i

o

g(x)

a

i

! 0

Then there does not exist a disjoint extension G

0

of G with a family of smooth operations g

1

; : : : ; g

n

with arities l

1

; : : : ; l

n

, respectively, such that

Bisim(G

0

) j= g(x) = g

1

(x; : : :; x

| {z }

l

1

-times

) + � � �+ g

n

(x; : : :; x

| {z }

l

n

-times

)

Proof: Assume, towards a contradiction, that such a G

0

exists. Let l be the maximum of l

1

; : : : ; l

n

and take P �

P

l+1

i=1

a

i

:0. Then g(P )

a

l+1

!

G

0
0. As g(P )

$

{{

G

0
g

1

(P

l

1

) + � � �+ g

n

(P

l

n

), there exists

1 � j � n and Q 2 T(�

G

0

) such that g

j

(P

l

j

)

a

l+1

!

G

0

Q

$

{{

G

0

0. Let � be any rule for g

j

that can

be



Input A regular GSOS system G.

Output

An in�nitary GSOS system G

0

of the form G

�

� RCCS such that G

�

is a regular GSOS

system that disjointly extends G, and RCCS v G

0

, together with an equational theory

T , such that BISIM(G

0

) j= T and T is strongly head normalizing for all terms of G

0

.

Step 1. Add to G a disjoint copy of RCCS.

Step 2. For each regular operation f 2 �

G

that is not both smooth and discarding, apply the

construction of Proposition 5.13 to extend the system with a regular smooth and discarding

version f

0

, in such a way that law (19) holds. Add all the resulting instances of law (19) to

T

FINTREE

[ (Rec).

Step 3. For each smooth, discarding and non-distinctive operation f 62 �

RCCS

in the resulting system,

apply the construction of Proposition 5.9 to generate good, regular operations f

1

; : : : ; f

n

in such

a way that law (17) is valid. The system so-obtained is the in�nitary GSOS system G

0

we were

looking for. Add to the equational theory all the resulting instances of law (17).

Step 4. Add to the equational theory obtained in Step 3 the equations given by applying Theorem 5.8

to all the good operations in �

G

0

� �

RCCS

. The result is the theory T we were looking for.

Figure 2: The algorithm

Next, an application of Theorem 5.8 gives that

T ` Q =

X

n

a:R j Q

a

!

G

0

R

o

The claim now follows immediately by transitivity and (20). 2

6 Completeness

For any regular GSOS system G, the algorithm presented in Figure 2 allows for the generation

of a disjoint GSOS extension G

0

with a strongly head-normalizing equational theory. The reader

might recall that this was the �rst step in the proof of completeness of T

RCCS

for Bisim(RCCS).

I shall now show how to mimic the remaining two steps in the proof of Proposition 4.3 to obtain

completeness for arbitrary regular GSOS speci�cations.

The following proposition plays the role of step 2 of the proof of Proposition 4.3 in this setting.

Proposition 6.1 Suppose that G is a regular GSOS system. Let G

0

and T denote the disjoint

extension of G, and the strongly head normalizing equational theory constructed by the algorithm

in Figure 2, respectively. Then, for all P;Q 2 T(�

G

0
) such that Bisim(G

0

) j= P = Q, there exists a

recursive speci�cation E T -provably satis�ed in the same variable x

0

by both P and Q.

Proof: Let P;Q 2 T(�

G

0
) be such that Bisim(G

0

) j= P = Q. By Proposition 4.4, it follows that

graph(P ) and graph(Q) are �nite. (Recall that G(R198 0 Td
((2
(P)Tj
/R246 0.24 Tf
12.4CS)Tj
/R26)0 Td6that



1. for each R 2 der(P ), there exists S 2 der(Q) such that R

$

{{

G

0

S, and

2. for each S 2 der(Q), there exists R 2 der(P ) such that R
$

{{

G

0
S.

Next de�ne

P

x

RS

=

X

n

a:x

R

0

S

0

j R

a

!

G

0

R

0

; S

a

!

G

0

S

0

; and R

0

$

{{

G

0

S

0

o

Note that, for each R

0

such that R

a

!

G

0

R

0

, P

x

RS

contains a summand of the form a:x

R

0

S

0

for some

S

0

, and that the same also holds for each S

0

such that S

a

!

G

0

S

0

.

Take E = fx

RS

= P

x

RS

j x

RS

2 V

E

g. First I show that P T -provably satis�es E. To see that

this is indeed the case, consider the substitution fR=x

RS

j x

RS

2 V

E

g. Then

T ` P

x

RS

fR=x

RS

j x

RS

2 V

E

g =

X

n

a:R

0

j R

a

!

G

0

R

0

o

= R by Theorem 5.15

A symmetric argument gives that Q also T -provably satis�es E. 2

The promised completeness result now follows easily from the previous theory.

Theorem 6.2 (Completeness) Suppose that G is a regular GSOS system. Let G

0

and T denote

the disjoint extension of G, and the strongly head normalizing equational theory constructed by the

algorithm in Figure 2, respectively. Then, T [ f(RSP)g is complete for equality in Bisim(G

0

).

Proof: The fact that Bisim(G

0

) j= T [ f(RSP)g follows immediately from Theorem 5.15 and

Proposition 4.3. It remains to be shown that for all P;Q 2 T(�

G

0

), Bisim(G



the algorithm presented in [2] arises from the fact that operations like the one given by the rules (3)

on page 7 cannot be neatly axiomatized in �nitary fashion �a l�a [2]. This is because the operation f

given by the rules (3) is smooth, but not distinctive; moreover, as shown in Proposition 5.10, under

mild assumptions, f cannot be expressed as a �nite sum of unary distinctive operations.

However, it is not too di�cult to see that f can be axiomatized, without recourse to auxiliary

operations, by means of the following equations:

f(0



as positive trigger. For every rule � 2 R(f; he

1

; : : : ; e

l

i), c

�

will denote its action, and C

�

[~x; ~y] its

target.

Note that if f is a bounded operation, then R(f; he

1

; : : : ; e

l

i) is a �nite set of rules for each trigger

he

1

; : : : ; e

l

i (cf. De�nition 3.2).

Proposition 7.3 Suppose f is a weakly distinctive, bounded, positive smooth operation of a disjoint

extension G of FINTREE, and let he

1

; : : : ; e

l

i be a positive trigger of f . Let I be the set of arguments

which are tested positively by rules for f of the form (7), and, for every i 2 I, let y

i

denote thebget.



Note that the cardinality of R= �

f

is at most 2

l

. Let R

1

; : : : ; R

n

be the equivalence classes of rules

for f determined by �

f

.

De�ne �

G

0

to be the signature obtained by extending �

G

with fresh l-ary operation symbols

f

1

; : : : ; f

n

. Next de�ne R

G

0
to be the set of rules obtained by extending R

G

, for each i, with rules

derived from the rules of R

i

by replacing the operation symbol in the source by f

i

. It is immediate

to see that each operation f

i

so de�ned is weakly distinctive, and that (25) holds. Moreover, by

construction, each f

i

is bounded if f itself was bounded. 2

The results presented so far in this section give strong head normalization for the terms in an

in�nitary GSOS system built from positive, consistent, bounded smooth operations only. In par-

ticular, they can be used to obtain strong head normalization for the terms in the recursion-free

sublanguages of the bounded de Simone systems in the beautiful presentation given by Vaandrager

in [39, De�nition 3.10].

To conclude this section, I shall now show how to axiomatize bounded positive GSOS operations

with limited fan-in (cf. De�nition 3.8). This can done following the spirit of Proposition 5.13.

First, we need a technical lemma, which is a slightly sharpened version of Lemma 5.12 on

page 19.

Lemma 7.5 Suppose G is an in�nitary GSOS system and P = f(~z) and Q = f

0

(~v) are terms over

�

G

with variables that do not occur in R

G

. Suppose that there exists a 1-1 correspondence between

rules for f and rules for f

0

such that, whenever a rule � for f with source f(~x) is related to a rule

�

0

for f

0

with source f

0

(~y), we have that there exists a bijective map �

�;�

0

from the target variables

of �

0

to those of � such that:

1. ante(�)f~z=~xg = ante(�

0

)(f~v=~yg � �

�;�

0

), and

2. target(�)f~z=~xg = target(�

0

)(f~v=~yg � �

�;�

0

).

Then BISIM(G) j= P = Q.

Proof: (Following the proof of Lemma 4.12 in [2]). Suppose that G

0

is a disjoint extension of G

and � is a closed �

G

0

-substitution. We have to prove P�

$

{{

G

0

Q�. For this it su�ces to show that,

for all a 2 Act and S 2 T(�

G

0
),

P�

a

!

G

0

S , Q�

a

!

G

0

S:

In fact, it is su�cient to prove the implication `)', since the reverse implication is symmetric. So

suppose P�

a

!

G

0

S. I will prove Q�

a

!

G

0

S.

Since P�

a

!

G

0
S, it must be the case that R

G

0
contains a rule � of the form

H

f(~x)

a

! T

and there exists a �

G

0

-substitution � such that

�(x

i

)

a

ij

!

G

0

�(x

0

ij

) for every positive antecedent x

i

a

ij

! x

0

ij

2 H (26)

�(x

i

)

b

ik

9

G

0

for every negative antecedent x

i

b

ik

92 H (27)

f(~x)� � P� (28)

T� � S (29)

26



Since G

0

disjointly extends G, we know that � is a rule of G. Thus there exists a rule �

0

in R

G

(and

hence in R

G

0
) of the form

H

0

f

0

(~y)

a

! T

0

such that, by the proviso of the lemma,

Hf~z=~xg = H

0

(f~v=~yg � �

�;�

0
) (30)

Tf~z=~xg � T

0

(f~v=~yg � �

�;�

0
) (31)



symbol. Then �

G

0

is de�ned as the signature that extends �

G

with an l

0

-ary operation symbol

f

0

. Let ~w = w

11

; : : : ; w

1N(f;1)

; : : : ; w

l1

; : : : ; w

lN(f;l)

and ~u = u

11

; : : : ; u

1N(f;1)

; : : : ; u

l1

; : : : ; u

lN(f;l)

be

disjoint vectors of l

0

di�erent variables. Suppose � is a rule for f as in (33) and consider the

substitution �

�

given by:

�

�

(w) =

8

>

<

>

:

x

i

if w = w

ij

for some 1 � i � l and 1 � j � N(f; i)

y

ij

if w = u

ij

for some 1 � i � l and 1 � j � m

i

w otherwise

I now wish to construct a rule �

0

for f

0

such that �

0

�

�

and � are identical with the exception of

their sources. This can be done as follows. Let �

0

be the positive smooth GSOS rule obtained from

� by replacing each antecedent x

i

a

ij

! y

ij

with w

ij

a

ij

! u

ij

, taking f

0

(~w) as the source of the rule, and

replacing each occurrence of a variable x

i

in the target with w

im

i

+1

. It is immediate to verify that

the rule �

0

does meet the desired requirement.

De�ne R

G

0
to be a set of rules that extends R

G

with a rule �

0

, de�ned as above, for each rule � for

f . It is easy to see that, by construction, f

0

is a positive, consistent smooth operation. Moreover,

again by construction, f

0

is bounded if so is f .

Let now ~z = z

1

; : : : ; z

l

be a vector of di�erent variables, all of them not occurring in R

G

, and

let ~v = v

11

; : : : ; v

1N(f;1)

; : : : ; v

l1

; : : : ; v

lN(f;l)

be the vector of length l

0

given by v

ij

= z

i

. It is easy to

see that, for each pair �, �

0

of corresponding rules:

1. ante(�)f~z=~xg = ante(�

0

)(f~v=~wg � �

�;�

0
), and

2. target(�)f~z=~xg = target(�

0

)(f~v=~wg � �

�;�

0
)

where �

�;�

0
denotes the restriction of �

�

to the target variables of �

0

. Thus we can apply Lemma 7.5

to obtain that BISIM(G

0

) j= f(~z) = f

0

(~v), as required. 2

As an example of application of the methods used in the proof of the above proposition, let us

consider the (useless) positive GSOS operation f given by the rules:

x

a

! x

1

; x

b

! x

2

f(x; y)

a

! x

x

a

! z

1

; x

c

! z

2

f(x; y)

c

! 0

This operation is not smooth as it has more than one positive hypothesis for its �rst argument.

The smooth and consistent version of f given by the above proposition is the ternary operation f

0

given by the rules:

x

a

! x

0

; y

b

! y

0

f

0

(x; y; z)

a

! z

x

a

! x

0

; y

c

! y

0

f

0

(x; y; z)

c

! 0

The corresponding instance of equation (32) relating f and its smooth and consistent version



7.2 Further Work

The developments of this paper suggest several interesting topics for further research, some of which

are already being investigated by the author. Below I list some directions for further work that I

plan to explore.

The class of regular operations that has been axiomatized in this paper is quite large, and

includes most of the standard operations found in the literature on process algebras. A notable

exception is the desynchronizing operation � present in the early versions of Milner's SCCS [27, 21].

This operation is given by the rules (one such rule for each a 2 Act):

x

a

! x

0

�x

a

! ��x

0

which are not simple. It is a challenging open problem to extend the class of regular GSOS

operations considered in this paper to include operations like Milner's �.

In this paper, I have not considered issues related to the e�ectiveness of regular in�nitary GSOS

languages, and of the resulting axiomatizations. Standard GSOS languages �a l�a Bloom, Istrail and

Meyer enjoy pleasant recursion-theoretic properties, and any proper extension of their work to

in�nitary languages ought to possess at least some of them. In future work I shall investigate

a class of in�nitary, recursive GSOS languages | that is in�nitary GSOS languages that could

conceivably have interpreters | and study the resulting axiomatizations produced by the methods

of [2].

Finally, it would be interesting to �nd alternative ways of axiomatizing general GSOS operations

that, like the one presented in Section 7.1, do not use the full power of the technical notion of

distinctiveness used in [2] and in this study.

Acknowledgements: Many thanks to Bard Bloom and Frits Vaandrager for the joint work [2]

which formed the main inspiration for this paper. Y.S. Ramakrishna provided much needed termi-

nological assistance.
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