
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Subtyping and Locality in Distributed

Higher Order Processes

Nobuko Yoshida

Matthew Hennessy

2 Nobuko Yoshida and Matthew Hennessy

with the core version of Facile [2, 9, 21] and CML [8] and can be regarded as an

extension of Blue-calculus [5] to a higher-order term passing language.

A desirable feature of some distributed systems is that every channel name is

associated with a unique receptor, which is called receptiveness in [32]; another

property called locality where new receptors are not created by received chan-

nels, has also been studied in [3, 4, 22, 38] for an asynchronous version of the

π-calculus. The combination of these constraints provides a model of a realistic

distributed environment, which regards a receptor as an object or a thread ex-

isting in a unique name space. A generalisation is also proposed in Distributed

Join-calculus where not only single receptor but also several receptors with the

same input channel are allowed to exist in the same location [11]; in this paper

we call this more general condition locality of channels. In distributed object-

oriented systems, objects with a given ID reside in a specific location even if

multiple objects with the same ID

8 Nobuko Yoshida and Matthew Hennessy

Common Typing Rules:

ID: Γ;u :τ` u : τ SUB:
Γ ` P : ρ ρ� ρ0

Γ ` P : ρ0

Functional Typing Rules:

CONST: Γ ` 1 : nat etc. ABS:
Γ;x :τ ` P : ρ

Γ ` λ(x :τ):P : τ

10 Nobuko Yoshida and Matthew Hennessy

Syntax:

System: M;N; ::: 2 System ::= P j N kM j (νa :σ)N

Term: P;Q; ::: 2 Term ::= Spawn(P) j � � � as Figure 1

Value: as Figure 1

Distributed Reduction Rules:

(process) P 7�! P0

P�! P0

P 7�! P0 from Figure 2

(spawn) (� � �Q jSpawn(P))�! (� � �Q)kP

(coms) (u?(x̃ : τ̃):P j � � �)k (u!hṼ iQ j � � �)�! (PfṼ=x̃gj � � �)k (Q j � � �)

(pars) (ress) (strs)

M �!M0

M kN �!M0

kN
N �! N 0

(νa :σ)N �! (νa :σ)N 0

N � N 0

�!M0

� M
N �!M

FIGURE 5. Syntax and Distributed Reduction in Dπλ

relation. The definition is outlined in Figure 5 and uses a structural equivalence

on systems, defined by changing “ j” to “ k ” and P;Q;R to M;N;N 0 in Figure 2.

The first two rules are the most important, namely spawning of a process at a

new location (spawn) and communication between physically distinct locations,

(coms).

DEFINING LOCALITY We require that every input channel name is associated

with a unique location. This is violated in, for example,

a?(y): P k (a?(z): Q jb?(x1): R1 jb?(x2): R2)

because the name a can receive input at two distinct locations. Note however that

the name b is located uniquely, although at that location a call can be serviced in

two different ways.

A formal definition of this concept (or rather its complement), locality error,

14 Nobuko Yoshida and Matthew Hennessy

Types:

Term Type: ρ ::= π j τ
Process Type: π ::= proc j s(proc)

Value Type: τ ::= unit j nat j bool j σ j s(τ) with τ 6= σ

j τ ! ρ with ρ � s(ρ0

)) τ � s(τ0)

Channel Type: σ ::= hS

I

;S

O

i with S

I

� S

O

, S

I

6=? and S

O

6= >

j s(h>;S

O

i)

Sort Type: S ::= as in Figure 3.

Ordering: All rules from Figure 3 and

(trans) ρ1 � ρ2 ρ2 � ρ3) ρ1 � ρ3

(mono) ρ� ρ0

) s(ρ)� s(ρ0

)

(sendable) s(ρ)� ρ
(id) s(ρ)� s(s(ρ))

(lift) s(τ)! s(ρ)� s(s(τ)! s(ρ))

FIGURE 8. Locality types for Dπλ

occurrence of b!hV i, where the term V can be exported to another location, it can

only evaluate to a value of sendable type.

4 Type Inference System for Locality

This section formalises a new typing system for processes. The important point

of our typing is that if each process in each location is statically type-checked, we

can automatically ensure that, in the global environment, input capability always

resides at a unique location even after arbitrary computation.

LOCAL TYPING SYSTEM We add a new type constructor s(ρ) for sendable

terms; the formation rules and ordering are given in Figure 8. The side con-

dition of arrow types simply avoids, as we will see, a sendable term having a

non-sendable subterm; e.g. if either P or Q is non-sendable, then P Q will auto-

matically be non-sendable. A similar side condition on arrow types can be found

in the passive types in [26].

The first rule ensures that� is a preorder. The second extra ordering says that

the constructor s() preserves subtyping, and the third that all sendable values

are also values. In conjunction with (id), this rule implies that sendability is

idempotent, s(s(ρ)) ' s(ρ) with '

def

= � \ �. Similarly with (lift), we have:

s(s(τ)! s(ρ)) ' s(τ)! s(ρ). Indeed this can be generalised:

Subtyping and Locality in Distributed Higher Order Processes 15

LEMMA 4.1. For any k � 0, we have:

s(s(τ1)! �� �! s(τk)! s(ρ)) ' s(τ1)! �� �! s(τk)! s(ρ) :

Proof A simple induction on k. 2

We will change the distributed typing system by ensuring a value V will only be

exportable to another location if it can be assigned a type of the form s(τ). How-

ever because our typing system has a subsumption rule a more general statement

would be that to be exportable we assign to V a type τ0 such that τ0 � s(τ), for

some τ. This leads to a formal definition of sendable types.

DEFINITION 4.2. Let Sble, the set of sendable types, be the least set of types

which satisfies:

� s(ρ) 2 Sble for any type s(ρ).

� τ; ρ 2 Sble implies τ! ρ 2 Sble.

We say ρ is sendable if ρ 2 Sble.

The main properties of the set of sendable types is given in the following propo-

sition:

PROPOSITION 4.3.

1. Sble is downwards closed with respect to subtyping: ρ0

� ρ and ρ 2 Sble

implies ρ0

2 Sble

2. ρ 2 Sble if and only if ρ' s(ρ)

3. ρ 2 Sble if and only if ρ� s(ρ0

) for some ρ0.

Proof

1. The proof is by structural induction on ρ0; so we can assume that the state-

ment is true of all ρ00 which are structurally less than ρ0. We now do a further

induction on the proof of ρ0

� ρ. Most of the cases are straightforward; for

example the use of any of the axioms in Figure 8 are immediate. The only

non-trivial case is when ρ0

; ρ have the structure τ1 ! ρ1; τ2 ! ρ2, respec-

tively, where τ2 � τ1 and ρ1 � ρ2. We know ρ2 2 Sble and therefore by

induction ρ1 2 Sble. Also because of the constraint on the formation of ar-

row types we know that τ1 � s(τ3), for some τ3. By construction s(τ3)2 Sble

and therefore, again by induction τ1 2 Sble. It follows that τ1 ! ρ1 2 Sble.

2. Suppose ρ 2 Sble. A simple proof by induction on why ρ 2 Sble gives ρ '

s(ρ), remembering that for any type ρ0 we have s(ρ0

)� ρ0 (if s(ρ0

) is defined).

The case when ρ is an arrow type uses Lemma 4.1. The converse follows

immediately from part one.

3. Now follows from parts one and two.

16

18 Nobuko Yoshida and Matthew Hennessy

Then SqServ

20 Nobuko Yoshida and Matthew Hennessy

types. By asserting that the type on the bound variable Y is in Sble we can reject

inappropriate inputs on the channel b. In a typing system based on the simple

assertions of the form

` τ is sendable

where τ is a type from Section 2, such reasoning would be difficult.

SUBJECT REDUCTION In this subsection we prove locality is preserved under

reduction. We take for granted that the revised type system satisfies the usual

properties such as Narrowing, Weakening etc.; these may be checked by the

reader.

LEMMA 4.12.

(1) (Algebra on environments) Γ1 ` SBL and Γ2 ` SBL imply Γ1uΓ2 ` SBL, and

∆1 �l

∆2 and ∆1 �l

∆3 implies ∆1 �l

∆2u∆3.

(2) (Sendable types) If ρ 2 Sble then Γ `
l

P : ρ implies there exists ∆ s.t. ∆� Γ,

22 Nobuko Yoshida and Matthew Hennessy

Suppose Γ `
l

(νa : σ)M kN. Then by induction, there are Γ1 and Γ2 which

satisfy Γ1;a : σ `

l

M, Γ2 `l N and Γ1 �l

Γ2. Since a 62 dom(Γ2), we have

Γ1;a : σ �

l

Γ2. Hence we have Γ1;a : σu Γ2 `l M kN which implies, since

Γ1;a :σuΓ2 = Γ1uΓ2;a :σ, that Γ1uΓ2 `l (νa :σ)(M kN), as required.

For the other direction, suppose Γ `
l

(νa : σ)(M kN) with a 62 fn(N). Then

by induction, we have: Γ0

1 `l M and Γ0

2 `l N such that Γ0

1uΓ0

2 = Γ;a :σ. Since

a 62 fn(N), we know that Γ0

2=a `
l

N. Then by (Γ0

1 ufa : σg)(a) = σ, we have

Γ0

1ufa :σg `
l

M, which implies Γ0

1=a `
l

(νa :σ)M. Finally by Γ0

1=a �
l

Γ0

2=a,

we have done. 2

THEOREM 4.16. (Subject Reduction Theorem)

� If Γ `
l

P :ρ and P 7�! Q, then Γ `
l

Q :ρ.

� If Γ `
l

N and N �!M, then Γ `
l

M.

Proof The proof for processes is identical to that of Theorem 2.6 and therefore

we concentrate on that for systems. We use induction on the derivation of N �!

M and because of the previous Lemma, and the first part of the Theorem, there

are only two non-trivial cases:

(1) (� � �Q jSpawn(P)) �! (� � �Q)kP

(2) (u?(x̃ : τ̃):P j � � �)k (u!hṼ iQ j � � �)�! (PfṼ=x̃gj � � �)k (Q j � � �).

Case (1): Assume Γ `
l

(� � �Q jSpawn(P)) and therefore in particular that Γ `
l

Spawn(P) : proc. Then Γ`
l

P : s(proc). Hence by Lemma 4.12 (2), there exists

∆ `
l

SBL such that Γ� ∆ and ∆ `
l

P : proc. It follows that Γ `
l

(� � �Q)kP since

Γ = Γu∆ and Γ �
l

∆.

Case (2): Let us just consider the case

u?(x̃ : τ̃): Pku!hṼ i: Q�! PfṼ=x̃gkQ (4.1)

We know that Γ has the form Γ1uΓ2 where Γ1 `l u?(x̃ : τ̃): P : proc and Γ2 `l

u!hṼ i: Q : proc with Γ1 �l

Γ2. We show that for some Γ0

1 such that Γ1uΓ2 =

Γ0

1uΓ2 and Γ0

1 �l

Γ2, we have Γ0

1 `l PfṼ=x̃g and Γ2 `l Q.

First, since u is not local in the left-hand side location, Γ2 `l u!h

24 Nobuko Yoshida and Matthew Hennessy

We now briefly outline how our typing system can be adapted to these more

general types; In the revised system judgements take the form

Γ `
g

P : ρ

First we need a more general replacement for the rule CHANl in Figure 9 to

26 Nobuko Yoshida and Matthew Hennessy

where both systems in the pair are typable under environment Γ. We show this

relation is a strong barbed reduction-closed up to �Γ and restriction.

To establish this, we first define the same notion of Definition 5.3.1 in [27];

we say a is only used as a trigger in P if Γ ` C[P] : proc and there exists ∆
s.t. ∆ � Γ, ∆ `

l

P : proc and ∆(a) = h>;S

O

i or ∆(a) � s(τ). Then we observe

that:

1. Suppose R is sendable. Then Γ `

l

(P jR) kQ iff Γ `

l

P k R kQ, and

(P jR)kQ�Γ PkRkQ.

2. If R is sendable, then all free names in R are only used as a trigger.

3. a is only used as a trigger in P and Q since the left-hand side of the above

equation is typable. Hence P and Q may only export the sendable value V

via a.

4. If a is used as a trigger in Q and V is sendable, then a in QfV=Xg is again

only used as a trigger.

Now take the set R0 of typable pairs of the form

h(νa)(Nfa=a0gkRkPfa=a0gkQfa=a0g); (νa;a0)(N k (R jP)k (Rfa0=agjQ))i

where a0 62 fn(R) and a and a0 are used as triggers in N,Ri, P and Q (note this is

a simple extension of the equation (25) in Appendix B in [27]). To establish R is

in �Γ, we show the above relation R0 is again a strong barbed reduction-closed

up to �Γ, using 1 to 4 above. 2

Note we do not require any side condition for P and Q, for example stating

that P and Q must be of a certain syntactic form; instead the typing system

enforces implicit constraints on the various components of the systems. Note

also that this proposition can not be derived in the framework of [32] since a is

neither a linear nor an ω-receptive name.

Such theorems will be useful for reasoning about object-oriented systems

where templates are shared among locations. Further extension of typed equiva-

lences studied in π-calculus (e.g. [32, 37]) to distributed higher-order processes

is an interesting research topic which we intend to pursue.

5.3 Type Checking

For a practical use of a typing system, it is essential that we can check the well-

typedness of a system N against a global type environment Γ. For this purpose,

first we propose a typing system (Minπλ) which can induce the minimum type

of a given term P and Γ (if it has a type) in πλ in Section 2, by deleting SUB and

modifying APP, OUT and IN in Figure 4 as follows.

APPm :
Γ ` P : τ1 ! ρ Γ ` Q : τ2 τ2 � τ1

Γ ` P Q : ρ

Subtyping and Locality in Distributed Higher Order Processes 27

INm:

Γ(u) � (τ̃)I

Γ; x̃ : τ̃ ` P : proc

Γ ` u?(x̃ : τ̃):P : proc

OUTm :

Γ `Vi : τi Γ(u)� (τ̃)O

Γ ` P : proc

Γ ` u!hṼ iP : proc
PROPOSITION 5.4.

(1) (ordering) ρ1 � ρ2 is decidable.

(2) (the minimum type in πλ) In the typing system in Figure 4, if Γ ` P : ρ then

there exists ρ0 such that Γ ` P : ρ0 and, for any ρ0, if Γ ` P : ρ0, then ρ0

� ρ0.

(3) (algorithm) There is a type-checking algorithm that given type environment

Γ and term P, computes the minimum type ρ such that Γ ` P : ρ if one exists.

PROOF. (1) we first note functional types of our system correspond the regular

system in [20] (see Theorem 5 in [20]). Next we observe that a subtyping be-

tween channel types hS1I;S1Oi � hS2I;S2Oi are also computed in the same way

as the arrow types; hence the subtyping relation is decidable.

(2) by easy induction on the derivations of Γ ` P : ρ in Minπλ, we obtain (a)

if Γ ` P : ρ is derived from Minπλ, then it is also derived from the system in

Figure 4, (b, unique type) Γ ` P : ρ1 and Γ ` P : ρ2 are derived in Minπλ, then

ρ1 = ρ2, and (c, Minπλ has smaller types) If Γ` P : ρ is derived from the system

in Figure 4, then Γ ` P : ρ0 is derived from Minπλ for some ρ0 such that ρ0

� ρ.

By (a,b,c), (2) is straightforward.

(3) It can be constructed straightforwardly based on Minπλ. See Appendix C for

that algorithm.

28 Nobuko Yoshida and Matthew Hennessy

up(ρ0) = s(τ1)! s(τ2) � � �s(τn)! ρ1 if ρ0 is in the form of (1) above

up(ρ0) = ρ else if ρ0 = s(ρ)

up(ρ0) = ρ0 else

We can easily observe that if ρ � ρ0, then up(ρ) 62 Sble and ρ� up(ρ) � ρ0.

30 Nobuko Yoshida and Matthew Hennessy

and the functional aspects of the language, as in Facile [9]. However extensions

of our capability based typing systems to more advanced distributed primitives,

such as hierarchical location spaces [36], process mobility [6, 33, 11], and cryp-

tographic constructs [1, 14] will be more challenging. Since in our language we

inherit the standard subtyping of the λ-calculus, it is also be possible to con-

sider the introduction of richer subtyping relations, for example those based on

records, recursive types, or polymorphic types into type systems for distributed

languages.

As argued in [9, 8, 21, 25, 33], many practical applications call for parame-

terised higher-order process passing, which may be difficult to represent directly

without functional constructions, even in languages which support migration of

the processes. Moreover their presence leads to a natural and powerful program-

32 Nobuko Yoshida and Matthew Hennessy

(i) (substitution) If Γ;x :τ ` P : ρ and Γ `V : τ. Then Γ ` PfV=xg : ρ.

(ii) (struct) If Γ ` P : proc and P� Q, then we have Γ `Q : proc.

PROOF. (1) is proved by the induction on P in the standard way. For (2), since

P� Q is defined only between processes, the proof follows the standard manner

as done in [35, 27, 15]. Hence we omit the proofs.

Now we prove Theorem 2.6. Then by Lemma A.1 (2) above, we only have

to prove the following two cases.

(1) Suppose Γ ` (λ(x : τ):Q)V : ρ and (λ(x : τ):Q)V 7�! QfV=xg. Then we

have: Γ ` QfV=xg : ρ.

(2) Suppose Γ` u?(x̃:τ̃):P ju!hṼiQ : proc and u?(x̃:τ̃):P ju!hṼ iQ 7�!PfṼ=x̃gjQ.

Then we have: Γ ` PfṼ=x̃gjQ : proc.

Case (1): Suppose Γ ` ((λ(x :τ):P)V) : ρ0. Then we have the following deriva-

tion.

Γ;x :τ `
l

P : ρ1 Γ `
l

V : τ2 τ2 � τ ρ1 � ρ0

Γ ` (λ(x :τ):P)V : ρ0

Then by SUB, we have Γ `

l

V : τ. Hence by Lemma A.1 (1), we get: Γ `

PfV=xg : ρ1. By applying SUB again, we have Γ ` PfV=xg : ρ, as desired.

Case (2): Suppose Γ ` u?(x̃ : τ̃):Q ju!hṼiR : proc. Then we have the following

derivations:

Γ ` u : (τ̃)I; and Γ; x̃ : τ̃ ` Q : proc

and

Γ ` u : (τ̃0)O; Γ ` u : Vi :τ0i; and Γ ` R : proc

Let us define Γ(u) = hS

I

;S

O

i. Then by SUB, we know: S

I

� (τ̃) and S

O

� (τ̃0).
Since always S

O

� S

I

by definition, we know (τ̃0) � (τ̃), which implies Γ ` u :

Vi :τi by SUB. Now applying Lemma A.1 (1), we have Γ ` PfṼ=x̃gjQ : proc.

B Proofs of Section 4

B.1 Proof of Proposition 4.5

As in the proof of Proposition 6.2 in [15], we show the operators,u andt defined

in the proof of Proposition 4.5 are partial meet and join operators. We only have

to show, for every type α;β;γ,

(a) α� β and α� γ imply βu γ defined and α� βu γ
(b) β� α and γ� α imply βt γ defined and βt γ� α
(c) βu γ implies βu γ� β
(d) βt γ implies β� βt γ

Subtyping and Locality in Distributed Higher Order Processes 33

By Lemma 4.4, we can consider every type takes a form either (1),(2) or (3) in

Lemma 4.4. Only interesting cases are β is sendable but γ is not sendable. Others

are easy by inductive hypothesis on types.

Base case (k = 0 in (2,3) of Lemma 4.4): The only interesting case is channel

types. Suppose β = s(h>;S1Oi) and γ = hS2I;S2Oi. For (a), suppose α � β and

α� γ. Then α� β implies α = s(h>;S2Oi) by Proposition 4.3. Then by this and

α � γ, we have S2I = >. By induction on S1O and S2O, S1O t S2O always exists,

and we have S1O tS2O � S0O. Hence βu γ = s(h>;S1O t S2Oi) is always defined,

and α� βuγ. For (b), we first note that γ� α implies α should be non-sendable,

and, by β� α, we can set α = h>;S2Oi. Then the rest of reasoning is just similar

with (a). (c) and (d) are also similar with (a) and (b), respectively.

Inductive Case (k � 1 in Lemma 4.4): The only interesting cases are β is in (1)

in Lemma 4.4, while γ is in (2) or (3). Here we must check operations βu γ and

βtγ do not induce illegal arrow types τ! ρ such that ρ 2 Sble but τ 62 Sble. We

only show the case of γ in (3). The case (2) is just similar. For (a), suppose

β ' s(τ11)! �� �! s(τk1)! s(ρ1) and γ' s(τ12 ! �� �τk2 ! ρ2)

where α � β and α � γ for some α. First we immediately know α can not

take the form (2) in Lemma 4.4 by α � β and Proposition 4.3. So let us define

α ' s(τ1 ! �� � ! ρ). Then α � β implies ρ � s(ρ1), hence by Proposition 4.3

again, we have ρ ' s(ρ0

) for some ρ0. By the formation of arrow type, we have:

τi ' s(τ0i). Hence α should take a form

α ' s(τ01)! �� �s(τ0k)! s(ρ0

)

for some τ0s

36 Nobuko Yoshida and Matthew Hennessy

G(∆; u) = ∆ ` u : ∆(x)

G(∆; l) = ∆ ` l : nat etc.

G(∆; PQ) = let ∆ ` P : τ1 ! ρ = G(∆; P)

∆ ` Q : τ2 = G(∆; Q)

in if Check(τ2 � τ1) then ∆ ` P Q : ρ
G(∆; λ(x :τ):P) = let ∆ ` P : ρ = G(∆; P)

in ∆ ` λ(x :τ):P : τ! ρ with x :τ 2 ∆
G(∆; 0) = ∆ ` 0 : proc

G(∆; P jQ) = let ∆ ` P : proc = G(∆; P)

∆ ` Q : proc = G(∆; Q)

in ∆ ` P jQ : proc

G(∆; �P) = let ∆ ` P : proc = G(∆; P)

in ∆ ` �P : proc

G(∆; (νa :σ

) =le7258 0.139(t)0.222486]TJ
/R19 9.16272 Tf
19.3434 0 Td
[(D)0.888611]TJ
/R258 0.16968 Tf
0 1 1 0 195.228 1927258 0.13`

:proc G

38 Nobuko Yoshida and Matthew Hennessy

Gs(∆; P) = let ∆;Γ `

l

P : π = Gl(∆; P)

in Γ `

l

P

Gs(∆; N1 kN2) = let Γ1 `
l

N1 = Gs(∆; N1)

Γ2 `
l

N2 = Gs(∆; N2)

in if Check(Γ1 �
l

Γ2) then Γ1uΓ2 `

l

N1 kN2

Gs(∆; (a :σ)N) = let Γ `

l2

) =

=

40 Nobuko Yoshida and Matthew Hennessy

[25] De Nicola, R., Ferrari, G. and Pugliese, R., Klaim: a Kernel Language for Agents Interaction

and Mobility IEEE Trans. on Software Engineering, Vol.24(5), May, 1998.

[26] O’Hearn, P., Power, J., Takeyama, M., and Tennent, D., Syntactic Control of Interference Re-

vised, Proc. MFPS’97, ENCS, Elsevier, 1997.

[27] Pierce, B.C. and Sangiorgi. D, Typing and subtyping for mobile processes. MSCS, 6(5):409–

454, 1996.

[28] Pierce, B. and Turner, D., Pict: A Programming Language Based on the Pi-calculus, Indiana

University, CSCI Technical Report, 476, March, 1997.

[29] Plotkin, G., Call-by-name, call-by-value and the lambda-calculus, TCS, 1:125–159, 1975.

[30] Riely, J. and Hennessy, M., Trust and Partial Typing in Open Systems of Mobile Agents, CS

