
CS Report 01/2001

Proxy Compilation

�

Matt Newsome and Des Watson

y

fmattn,deswg@cogs.susx.ac.uk

January 2001

Abstrat

In this paper, we outline new research concerning dynamic compilation of Java applications

in environments where system resources are signi�cantly limited. In such environments, which

include \smart" mobile telephones and Personal Digital Assistants, memory and processor cy-

cles can be scarce, making current techniques for the runtime translation of Java programs

or program fragments inappropriate. We propose an alternative technique, proxy ompilation,

which makes use of idle, connected devices on a network to compile code on its behalf.

1 Introdution

The Java programming language[10, 21℄, although ommonly assoiated with Internet programming,

is a general-purpose objet-oriented programming language. Many of its features, suh as the use of

a garbage-olleted memory alloation sheme, a virtual mahine exeution model and single lass

inheritane, have been highly lauded within the omputer programming industry and aademia.

The traditional role of the ompiler[1, 13, 42, 23℄ has been to failitate one-time translation of human-

readable soure programs into mahine-readable objet programs. The generated software is then



order of magnitude. One ommon modi�ation to this sheme, made in pursuit of faster program

exeution, has been to translate JVM ode into native



2.1 Major omponents

The Java Virtual Mahine (JVM) is an abstrat mahine whih proesses JVM lass�les. Suh

lass�les



the �rst referene to that symbol. The delay is generally in pursuit of inreased exeution speed:

not all symbols in a lass�le will be referened during exeution, so by delaying resolution, fewer

symbols may need to be resolved with less runtime overhead. Additionally, the ost of resolution is



The JVM supports arrays as



Some innovative alternatives to the JVM lass�le format



3.2 Proxy Compilation

One possible outome of the researh work desribed above ould be that, owing to limitations on

available time for the translation of lass�les at load-time, the runtime translation of JVM to LVM

is impratial within a spei� ROM, RAM or stak limit (above whih, assumedly, the translation

would be too intrusive or expensive). A suÆiently



4 Next Steps

We are urrently implementing a dynami ompilation system to allow us to experiment with the

ideas outlined above. The system is researh-driven; onsequently, we plan to support representative,

but minimal Java programs. This implies supporting a subset of the Java 2 Platform API with, for

example, omplex I/O and networking failities omitted. The AWT, Swing and JFC setions of the

Java 2 Platform API will also be omitted, allowing us to fous on onsole-based appliations.

Firstly, we are de�ning and implementing an initial LVM in C++, together with a JVM lass�le

JIT ompiler for produing LVM or target mahine ode at runtime. We expet to either implement

a very simplisti garbage olletor or use one of those freely available[2℄ under the GNU Publi

Liense[36℄. We will onsider the interation of the LVM with the garbage olletor during this

work; there may be some advantages to be gained from representing objets using a load/store VM



interpreter-based VMs for their high-speed startup times and small memory footprint, their argu-

ment is based upon their own Smalltalk VM. The relevane of their �ndings to Java systems is

unlear, though assumedly a proxy ompilation system bene�ts from the minimal VM while also

reaping the bene�ts of a powerful and exible dynami ompilation system.

In the Ahead-of-Time domain, numerous stati Java ompilation systems exist[30, 9, 25, 24, 31, 11,

5, 38℄ though most are oriented to desktop systems with plentiful resoures. All systems generate

native binary ode either diretly or via ANSI C, whih is subsequently ompiled o�-line. This

approah is generally speed eÆient, but often forbids use of dynamially loaded lasses (e.g. [4℄)

and su�ers the overheads of native ode relative to ompat VM byteode.

The COMPOSE group's Harissa[25, 24℄ system notably aknowledges the requirement for statially-

ompiled Java appliations to exeute dynamially loaded lasses, however, its solution - an inter-

preter - results in a slow, if ompat solution. An equivalent interpreter has reently been added to

the GNU gj ompiler[31℄. Neither system addresses eÆient runtime ompilation of dynamially

loaded Java ode in resoure-onstrained environments.

Roelofs[32℄ notes the harateristis of resoure-onstrained systems, but is hiey onerned with

using onneted devies to allow remote exeution of appliation ode. Our researh instead seeks to

use more powerful peers to speed translation of the devie's ore program for subsequent exeution

on the devie itself.

Wakeman et al[26, 15℄ have worked on researh whih similarly aknowledges the problems of en-

vironments in whih resoures are limited. Their approah uses a proxy devie to serve suitably

ompressed or saled versions of requested data in aordane with lient-spei�ed onstraints ex-

pressing, for example, degradation limits. This is analogous to the notion of proxy ompilation,

though the authors have not spei�ally proposed it. The work also proposes that lients inform the

proxy of their resoures. This is a potentially attrative tehnique whih would allow the server to

speialise a ode fragment or appliation for the spei� resoures available to the lient. In situa-

tions where low resoures prohibit exeution pro�ling, this may be the only feedbak the lient an

provide regarding the runtime environment. An additional, albeit lesser, onsideration is that their

implementation uses Java and RMI on the lient side. Our work diretly addresses the question of

proxy ompilation and is designed to sale to very simple lients where a Java runtime environment

may not be feasible.

The vast majority of dynami ompilation systems require storage of a dynami ompiler system in

the runtime environment, and must exeute on the target system. The small number of projets

whih do not employ this model are now desribed. Voss and Eigenmann[41℄ detail a system whih is

notionally similar to proxy ompilation, but assumes various system harateristis. These inlude a

requirement for NFS mounted storage to be shared between systems and a reliane on RPC failities.

We believe suh a solution would not sale well to resoure-onstrained systems (partiularly single

threaded appliations whih use a minimal operating system or do not require an OS). Additionally,

this projet has foussed on ANSI C and FORTRAN appliations rather than Java.

Bell Labs' Inferno system[44, 43, 7℄ and Tao Systems' Elate/Intent system[12℄ both use a low-level

VM instrution set to inrease the eÆieny of Java ode. These two systems are now ontrasted

with our proposed systems.

Inferno's use of a memory-to-memory virtual mahine results in a virtual mahine arhiteture whih

is super�ially similar to our proposed LVM system. There are a number of ritial di�erenes,

however. Firstly, Inferno is target-independent, supporting Intel x86, SPARC, ARM, PowerPC,

MIPS and other devies. Although the priniple of a low-level virtual mahine is appliable to targets

with a load/store arhiteture, we expet to inrease eÆieny by reating speialised versions of the

LVM instrution set for individual proessors. Furthermore the Inferno virtual mahine (Dis) has an

instrution set whih has been designed for the Limbo programming language, not Java. Although

there are many similar features, inluding objets and garbage olletion, supported by an[()1999.e(devies.)Tj
3ext999.d1.321 13Td
[(sa)Tj
7.8 0 Td
(load/store)Tj
47.1(a)2001.34(1999.92(hiteture)℄TJ
54.3m[f.)Tj
-61.2 system.r714,



Elate/Insight also uses a low-level, target-independent instrution set, however it, like the Kimera

projet[35℄, use a form of remote ompilation whih relies on shared memory and persistent network

onnetions. Suh systems fail to aknowledge the often intermittent nature of network onnetions

to resoure-onstrained devies. As desribed above, our proxy ompilation sheme is designed to

sale to a



[4℄ Natural Bridge. Bullet-Train Homepage.

http://www.naturalbridge.om/bullettrain.html.

[5℄ Department of Computer Siene and Engineering, University of Washington.

Ceil/Vortex Homepage.

http://www.s.washington.edu/researh/projets/eil/www/index.html.

[6℄ Stephan Diehl. A Formal Introdution to the Compilation of Java. Software { Pratie and

Experiene, 28(3):297{327, Marh 1998.

[7℄ Sean Dorward, Rob Pike, David Leo Presotto, Dennis Rithie, Howard Trikey, and Phil Win-

terbottom. Inferno. In Proeedings of the IEEE Compon 97 Conferene, pages 241{244, San

Jose, 1997.

[8℄ Erisson Mobile Communiations AB. OÆial Bluetooth website.

http://www.bluetooth.om, 1999.

[9℄ Robert Fitzgerald, Todd B. Knoblok, Erik Ruf, Bjarne Steensgaard, and David Tarditi. Mar-

mot: An Optimizing Compiler for Java. Tehnial Report MSR-TR-99-33, Mirosoft Researh,

June 1999.

[10℄ James Gosling, Bill Joy, Guy Steele, and Gilad Braha. The Java

TM

Language Spei�ation.

Addison-Wesley, 2nd edition, 1999.

[11℄ Siliomp Group. Turbo-JHomepage.

http://www.ri.siliomp.fr/adv-dvt/java/turbo/.

[12℄ Tao Group. Elate/Insight Homepage.

http://www.tao.o.uk.

[13℄ Dik Grune, Henri E. Bal, Ceriel J.H. Jaobs, and Koen G. Langendoen. Modern Compiler

Design. John Wiley and Sons, Ltd., 2000.

[14℄ Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Niolau. Annotating the Java

Byteode in Support of Optimization. Conurreny: Pratie and Experiene, 9(11):1003{1016,

November 1997.

[15℄ Ian Wakeman, Andy Ormsby, and Malolm MIlhagga, Shool of Cognitive and Computing

Sienes, University of Sussex. An Arhiteture for Adaptive Retrieval of Networked Information

Resoures. IEE Colloquium on



[22℄ Blair MGlashan and Andy Bower, Objet Arts Ltd. The Interpreter is Dead (Slow). Isn't it?

Position Paper for OOPSLA'99 Workshop: Simpliity, Performane and Portability in Virtual

Mahine design.

http://www.squeak.org/oopsla99_vmworkshop/, Otober 1999.

[23℄ Steven S. Muhnik. Advaned Compiler Design and Implementation. Morgan Kaufmann, 1997.

[24℄ G. Muller, B. Moura, F. Bellard, and C. Consel, IRISA / INRIA, University of Rennes. Harissa:

A Flexible and EÆient Java Environment Mixing Byteode and Compiled Code. In 3rd Usenix



[41℄ Mihael J. Voss and Rudolf Eigenmann. A Framework for Remote Dynami Program Optimiza-

tion. In Jong-Deok Choi, editor, Proeedings of the ACM SIGPLAN Workshop on Dynami

and Adaptive Compilation and Optimization (Dynamo '00)


