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to particular locations and that this binding may vary over time, i.e. agents can

move. Resources, on the other hand, are often fixed to a single location, although

proxies and mirrors may be set up in order to distribute their contents.

In open distributed systems, such as the internet, it is unwise to assume that

all agents are benign, and thus a certain amount of effort must be spent to ensure

that vital resources are protected from unauthorized access. This can be accom-

plished by using a system of capabilities and by predicating resource access on

possession of the appropriate capability. It is unreasonable, however, to expect

that every use of every resource in a system be thus verified dynamically; such a

requirement surely would degrade system performance unacceptably. Thus it is

attractive to develop static analyses, or typing systems that guarantee controlled

access to system resources.

We present a typed language for mobile agents which allows fine control

over the use of resources in a system. We also define a tagged version of the

language in which agents explicitly carry the sets of capabilities which they have

acquired. Using this tagged language, we capture resource access violations as

runtime errors and show that well-typed terms are incapable of such errors.

The language studied in this paper, called Dπ,1 is a distributed variant of the

π
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chanhLi, which is the type for channels which communicate locations of type L.

Agents may restrict access to a resource by controlling the type of the channel

over which the name of the resource is sent. Thus if an agent sends the name `

over a channel of type chanhlocfa:A;b:Bgi, then the recipient gains access to

channels a and b at `. Instead, when the same name is communicated over a

channel of type chanhlocfa:Agi, the recipient gains access only to channel a at

`. Of course for such communication to be sound, the sender must have, for the

value it is sending, all of the capabilities that the channel requires. Otherwise

a sender could “forge” arbitrary capabilities. To formalize this requirement we

introduce a subtyping relation on types. On location types, the subtyping relation

is the same as traditional record or object subtyping:

locfa1:A1; :::;ak:Akg � locfa1:A1; :::;ak:Ak; :::;an:Ang

We develop the typing system in stages. In Section 4, we present a simple

typing system in which subtyping applies to locations, but not channels. Using

this type system we set up the major results of the paper: subject reduction and

type-safety. These results are repeated for subsequent typing systems as well.

In Section 5 we observe that the simple type system, while natural, is overly

restrictive. An important aspect of mobile agents is the ability to acquire capabil-

ities from multiple sources. For example, an agent located at ` may have a capa-

bility at k which allows it to acquire additional capabilities at k. To exercise this

right, the agent may spawn a “sub-agent” to go over to k, get the new capabilities,

then come back and report. The difficulty is that when the new capabilities are

received back at the original agent, they are received with respect to a separate

instance of the name k. In order to establish subject reduction, the simple type

system makes it impossible to use in concert capabilities acquired on different

instances of a location. Some examples which require this extra expressiveness

are given in Section 3. To overcome this limitation, we weaken the simple type

system by allowing capabilities to be merged from different instances of a loca-

tion name using a match (or equality) operator “if z = k then p”. Crucial to the

new type system and to the proof of its soundness is the fact that the subtyping

relation is bounded complete, i.e. whenever two types have a common subtype

they have a greatest common subtype.

In Section 6 we extend the improved type system to a language with channel

subtyping, based on read and write capabilities. The extended type system is

based on that of Pierce and Sangiorgi [24], who first studied channel subtyping

for π-calculi. Pierce and Sangiorgi’s definition of subtyping, however, is not

bounded complete. To rectify this, we use a type language and subtyping relation

which generalize those of [24]. In this section we also augment location types

with explicit capabilities for channel creation and agent movement.

The paper concludes with a discussion of related work and open issues.
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2 The Language

In this section we describe Dπ, defining many auxiliary notations that are used

throughout the paper. Before describing the syntax and reduction semantics, we

first present an example which gives an overview of the features of the language.

A typical Dπ system is the following:

`JpK j (νa:fk:Ag) (`JqK j kJrK)

There are three agents running in parallel: `JpK and `JqK running at location ` and

kJrK running at location k. Moreover q and r share a private channel a, declared

at location k. Suppose that `JpK has the from:

`Jb?(x)p1 j c?(Y)p2K

This agent contains two subthreads, which when split will run in parallel. The

first subthread awaits input on channel b, whereas the second awaits input on

channel c. If agent kJrK has the form kJb!hdi r0K, one might expect that commu-

nication could occur between p and r on channel b. This is not the case, however.

The two instances of b refer to resources at different locations, even though they

have the same name.

To communicate with p, r must first move from k to ` and then use b at `.

We write such an agent as kJ` :: b!hdi r0K. This term can reduce to `Jb!hdi r0K,

enabling local communication between p and r. After the communication the

system is:

`Jp1fj
d
=xjgK j `Jc?(Y)p2K j (νa:fkg) (`JqK j `Jr0K)

The asynchronous form of this idiom (where r0 is nil) is used so frequently that

in Section 3 we introduce the notation “`:a!hVi” as shorthand for “` :: a!hVinil.”

In order for kJ` ::b!hdi r0K to be well-typed, it must be that the name d com-

municated is also located at `. To enable the communication of non-local names,

a different syntax must be used. Suppose that `JqK now wishes to send the pri-

vate name a (located remotely at k) to the agent `Jc?(Y)p2K. In this case we

must write `JqK as `Jc!hk[a]iq0

K. We motivate this syntactic distinction in our

discussion of types on page 6.

2.1 Syntax

The syntax of the language is given in Table 1. In defining the syntax, we pre-

suppose the existence of a set Var of variables, ranged over by x-z, and a set

Name of names, ranged over by a-m. Both variables and names are typed; how-

ever, since we consider different type systems in the course of the paper, we do

not report the syntax of types in Table 1. The type system used in Sections 4

and 5 is described on page 6. For the moment, suffice it to say that names are

assigned atomic types, E-G, which may be either channel types, A-C, and loca-

tion types, K-M. Variables may additionally be assigned one of the compound
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TABLE 1 Syntax

Systems:

P-R ::= nil P jQ

(νa:Λ)P

(νm:M)P

`JpK

Threads:

p-r ::= nil p jq

(νa:A)p

(νm:M)p

u :: p

u!hVip u?(X:ζ)q

�p if u = v then p else q

Ids, Patterns, Values:

u-w ::=e x

X-Z ::=x z[ex] eX

U-W ::=u w[eu] eU

or value types, ranged over by ζ and ξ. To improve readability we usually use

k-m to range over names of location type and a-c for names of channel type; we

use e-g when the type of a name is unimportant. We also routinely drop type

annotations when they are not of interest.

Systems, Agents and Threads.
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other groups using a tilde; e.g. we may write ea instead of (a1:::an) and (νee:eE)p

instead of (νe1:E1) :::(νen:En)p. We also may write “if u = v then p” instead of

“if u = v then p else nil” and “if u 6= v then q” instead of “if u = v then nil else q.”

Types, Values and Patterns. We view knowledge of channel a at ` as a ca-

pability to use a at `. These capabilities are the basis of simple location types,

which are defined as follows:

K-M ::
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TABLE 3 Structural Equivalence

(s-nil) `JnilK � nil

(s-split) `Jp jqK � `JpK j `JqK

(s-itr) `J�pK � `JpK j `J�pK

(s-newc) `J(νa:A)pK � (νa:f`:Ag)`JpK

(s-newl) `J(νk:K)pK � (νk:K)`JpK if k 6= `

(s-extr) Q j (νe)P � (νe) (Q jP) if e =2 fn(Q)

variables).

The rule r-comm
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allows an agent to split into two independent agents (`JP jQK� `JPK j`JQK). The

rule s-nil allows for garbage collection of terminated agents, whereas s-itr pro-

vides a standard interpretation of iteration. Note that when a channel name is

extracted from a thread using s-newc (`J(νa:A)pK � (νa:f`:Ag)`JpK) it is nec-

essary to record in the “global” restriction the location at which the name was

defined.

3 Examples

In order to simplify the presentation of examples, we will assume a set of basic
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The user increments the counter twice, then reads its value, reporting the result

on the channel out located at h. We write the combined system as

U

hh
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To explain this, at least informally, suppose there are two additional agents

in the system presented in (*). Call these F1 and F2 as they are “friends” of U1

and U2 respectively. In addition, suppose that each friend Fi has a channel ai of

type chanhLii, where:

L1 = locfrd:A
rd

g

L2 = locfrd:A
rd

;up:A
up

g

Thus each channel ai is constrained to transmit values of type Li. So when a

location name is transmitted on a1, only the permission to use method rd at that

location is granted, whereas a2 also confers permission to use method up. Now

consider the system

P j F1(k1) j F2(k2)

where P is the system from (*), and users and their friends have the form:

Ui(h;cnt) ( ai!hcnti

Fi(h
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4 Types

In this section we define a typing relation for the language presented in Section 2

and show that it is sound. To prove soundness, one normally proves two prop-

erties: subject reduction and type safety. Subject reduction says simply that

well-typedness is preserved by reduction; i.e. if P is well typed and P �! P0

then P0 is also well typed. Intuitively, type safety asserts that a well typed term

“does nothing bad”; combined with subject reduction it guarantees that a term

can never do the “bad” thing. What exactly is “bad” varies from one language

to another. In the lambda calculus, the bad thing may be to reach an irreducible

form that is not canonical; thus the type safety theorem states that if a term is

well typed, then either it is canonical or it can reduce.

In reactive languages which lack such canonical forms, such as the polyadic

π-calculus, the statement of type safety is more delicate. Milner [20] describes

type safety as freedom from arity mismatches. For example, the system

`Jc!ha;biK j `Jc?(z:loc) z :: qK

gives rise to a runtime error because the first thread sends a pair of channels,

whereas the second expects a singleton location. This definition of type safety is

related to that for the lambda calculus: arity matching is required for substitution

(and therefore the reduction rule r-comm) to be defined.

Type safety for π-calculi with capabilities was first studied by Pierce and

Sangiorgi [24]; we presented an alternative formulation in [25], which we now

recount. The basic idea is that every instance of a name is tagged with certain

capabilities and each instance may only be used as its capabilities allow; attempts

to use a name without the proper capability result in runtime error. For the simple

type language of Section 2.1, only locations need be tagged, and each instance
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TABLE 4 Simple Types

Types: Subtyping:

LType: K ::= locfea:
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has a greatest lower bound. That is, there exists a partial meet



18 M. Hennessy and J. Riely

Γ ` P is read “the term P is well-typed with respect to environment Γ.” The pur-

pose of the type environment is to provide a type for all of the free identifiers in

P. Since the type system is static and therefore must be defined over open terms,

type environments must provide types for variables in addition to names. The

type environment thus provides a view of every free identifier, where the type

(indeed the existence) of a channel name or variable depends upon its location.

We allow variables to receive values other than simple names; so in addition to

channel and location types, a variable may have a tuple type eζ, or an existential

type L[(A1:::An)] (where n is greater than zero). Given these considerations, we

take type environments to be maps from identifiers to open location types, which

have the form locfeu:eζg. By contrast, the location types of Section 2.1 (locfea:eAg)

are referred to as closed. As an example, the following is a type environment:

∆ =

�

`:locfa:A;x:Bg; z:locfa:A0

g

	

We write Γ(w) to refer to the type of the location w in Γ, and Γ(w;u) to refer

to the type of the channel or variable u at location w. So for ∆ as defined above,

∆(z) = locfa:A0

g and ∆(`;x) = B, whereas ∆(z;x) is undefined.

We use the same metavariables (K
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value V is well formed at w and has at least the capabilities specified by ζ. Recall

that in values, we treat u:L as shorthand for u[ ]:L[ ]. Location types, both simple

and existential, are independent of the location w at which they are typed.

The heart of the typing system are the rules for threads, and in particular

the rules for communicating terms, t-w
t

and t-r
t

. For example, to deduce that

u!hViq is well-typed to run at location w

Γ `w u!hViq

it is necessary to establish

� Γ `w V:ζ, i.e. V is a well formed value at w with capabilities specified by

some type ζ,

� Γ `w u:chanhζi, i.e. u is a channel at location w which may communicate

values of type ζ, and

� Γ `w q, i.e. q is well-typed to run at w.

The input construct is similar. To deduce Γ `w u?(X:ζ)q we must, as before,

establish that u is a channel of type chanhζi at location w, but in deducing that q

is well-typed we may use the augmented environment Γ; wX:ζ.

In the rule for code movement, t-move

t

, the location of the thread changes:

to type Γ `w u ::p one must ensure that p is well typed at u, not w; therefore the

premise is Γ `u p. The remaining rules for threads are straightforward. The rules

for (mis)matching are standard. The rules for name creation t-newl
t

, t-newc
t

simply augment the typing environment in the appropriate manner. The other

rules are purely structural.
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TABLE 5 A Type System

Threads:

(t-r
t

)

Γ `w u:chanhζi Γ; wX:ζ `w q

Γ `w u?(X:ζ)q
(t-w

t

)

Γ `w u:chanhζi; V:ζ; p

Γ `w u!hVip

(t-eql
t

)

Γ `w u:L;v:L; p; q

Γ `w if u = v then p else q
(t-eqc

t

)

Γ `w u:A;v:A; p; q

Γ `
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4.3 Examples

We now consider some simple type inferences. As a first example consider the

single agent:

P = `Jc?(z:K) z :: a!hViK

At location `, P receives location z on channel c
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TABLE 6
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In the rule r

t

-comm, which states

`Ja!hVipKΓ j `Ja?(X:ζ)qK∆ 7�! `JpKΓ j `JqfjV=XjgK∆uf
`

V :ζg

there are two agents at `: one willing to send the value V, and the other wait-

ing to receive a value into X. Recall that obj(A) denotes the transmission type,

or object type used in the channel type A, i.e. obj(chan
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a (closed) system in the untagged language and returns the set of tagged terms

which can safely be derived from it using Γ. Throughout the rest of this dis-

cussion we will use P to range over untagged terms and Q to range over tagged

terms. The function “tagΓ” is defined on the structure of systems as follows:

tagΓ(nil) = fnilg
tagΓ(`JpK) = f`JpK∆ j Γ� ∆ and ∆ `

`

p g

tagΓ(P1 jP2) = fQ1 jQ2 j Qi 2 tagΓ(P
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TABLE 7 Runtime Errors

(e-eql) `Jif k = m then p else qKΓ
err
7�! if k =2 Γ or m =2 Γ

(e-eqc) `Jif a = b then p else qKΓ
err
7�! if a =2 Γ(`) or b =2 Γ(`)

(e-snd) `Ja!hVipKΓ
err
7�! if Γ

`

(V) � obj(Γ(`;a))
(e-rcv) `Ja?(X
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bilities, it doesn’t keep receivers from doing so. For example, let

A = chanhlocfb:Bgi C = chanhAi

and suppose Γ(`;c) = chanhAi. Then using the rule proposed above, the system

`J(νa:A) c!hai a!hkiKΓ j `Jc?(x:A) x?(z:locfb:B;d:Dg) qK∆

will not produce an error, as long as ∆(k) actually has the b and d capabilities.

However, the receiving agent has clearly gained more capabilities at k than the

sender intended (indeed, more capabilities the sender has itself), namely access

to d. The problem here is that the intermediary role of channel a is ignored. Thus

we are led to the refined rules given in Table 7. Using these rules (in particular

e-rcv), the agent

`Jc?(x:A) x?(z:locfb:B;d:Dg) qK∆

will produce an error after its first input.

With this motivation, let us discuss each of the rules in turn. There are three

different reasons why a runtime error might occur due to communication.

� The sender attempts to forge capabilities. Rule e-snd says that V may not

be sent on a if a requires more capabilities than available at V. Thus an

error occurs if the sender’s view the value to be sent does not satisfy the

requirements of (the sender’s view) of the communication channel a. Note

that this includes the possibility that Γ(`;a) is not defined, i.e. the sender has

no a capability at `.

� The receiver attempts to forge capabilities. Rule e-rcv says that a sender may

not assign a received value more capabilities than are allowed by a. Thus

an error occurs if the receiver’s view of the value to be received exceeds the

capabilities of (the receiver’s view) of the values communicated on channel

a. Again this includes the case when ∆(`;a) is undefined.

� The sender and receiver cannot agree on the use of a. Rule e-comm
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THEOREM 4.12 (TYPE SAFETY). Γ  Q implies Q err
7�X�!.

Proof. We prove the contrapositive, namely Q err
7�! implies that for no Γ can we

prove Γ  Q. The proof proceeds by induction on the definition of Q err
7�!. For

the rule involving the structural equivalence, we the Subject Reduction Theo-

rem, which states that if Q � Q0 then Γ ` Q iff Γ ` Q0. The other cases are all

straightforward. We present a representative case, e-snd. The rule states:

`Ja!hVipKΓ
err
7�! if Γ

`

(V) � obj(Γ(`;a))

By way of contradiction, assume that ∆  `Ja!hVipKΓ. We show that from this

premise we may conclude Γ
`

(V) � obj(Γ(`;a)), leading to a contradiction.

Using the premise and the rule t

t

-run
s

, we have that Γ `
`

a!hVip. This

judgment can only be achieved using t-w
t

, and therefore we have that Γ `
`

a:chanhζi;V:ζ for some ζ. Using Lemma 4.11, we therefore may conclude

that Γ
`

(V) � ζ. Using similar reasoning, we have chanhζi = Γ(`;a), and thus

ζ = obj(Γ(`;a)). We therefore may conclude that Γ
`

(V) � obj(Γ(`;a)), as de-

sired. �
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TABLE 8 An Improved Type System

All rules from Table 5 except t-eql
t

.

(t-eql0
t

)

Γ `0 u:K;v:L Γ `0w q Γufu:L;v:
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The augmented type system is also needed in order to type the “remote chan-

nel creation” code reported in Example 4 of Section 3. There we presented an

encoding of

T(h)( ` :: (νa;b) h :: p (†)

as:

T(h)( (νr) ` :: (νa;b) h :: r!h`[a;b]i

j r?(z[x;y]) if z = ` then pfjz[x;y]=̀ [a;b]jg

(‡)

Using the type system of Section 4.2, the fact that (†) is well-typed does not

guarantee that (‡) is well-typed; using t-eql0
t

, however, this property can be es-

tablished. The “routed forwarding” example (Example 5) also requires the im-

proved type system.

In fact there are many cases in which it is useful for an agent to accumulate

knowledge of the capabilities of a location as computation proceeds. This ap-

pears to be essential for coding certain types of programs in a language such as

ours where access to distributed resources is controlled using explicit capabili-

ties.

As a particularly simple example, consider a server agent that provides infor-

mation about a freshly created location piecemeal:

kJ(νa;b;c) (ν`:locfa;b;cg) d!h`[a]i e!h`[b]i f !h`[c]iK

Here the server creates a new location ` with three local methods a, b and c and

gradually exports knowledge of `
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6 Type Extensions

In this section we show how to extend our results to a richer type system with

non-trivial subtyping on channel types. Following Pierce and Sangiorgi [24],

channel subtyping is defined using read and write capabilities. Our requirement

that all types be FBC, however, forces us to follow a more general approach than

that of [24]. Examples of the use of these extended types may be found towards

the end of the section.

Types and Subtyping. The definition of extended pre-types is given in Table 9,

where we explicitly introduce syntactic categories for location capabilities κ-λ
and channel capabilities α-β. We define types below, after discussing subtyping.

In the extended language we will require explicit capabilities to perform op-

erations on locations; thus the set of location capabilities is extended from that

of Section 4. The new capabilities are:

� move, the ability to move to the location, and

� newc, the ability to create a new local channel.
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TABLE 9 Extended Pre-Types

Capabilities: Subtyping:

κ ::= move newc κ � κ
a:A a:A � a:B if A� B

α ::= rhζi rhζi � rhζ0

i if ζ � ζ0

whξi whξi � whξ0

i if ξ0

� ξ
Pre-Types:

K ::= locf

eκg K � L if 8λ2 L : 9κ 2 K : κ� λ
A ::= chanf

eαg A � B if 8β2 B : 9α 2 A : α� β
ζ ::= A eζ eζ � eξ if 8i : ζi � ξi

K[eA] K[eA] � L[eB] if K� L and eA� eB

DEFINITION 6.1 (EXTENDED TYPES).

(a) A location pre-type K is a type if a:A 2 K and a:A0

2 K imply A = A0.

(b) A channel pre-type A is a type if:

rhζi 2 A and rhζ0

i 2 A imply ζ = ζ0

whξi 2 A and whξ0

i 2 A imply ξ = ξ0

rhζi 2 A and whξi 2 A imply ξ� ζ

(c) Pre-types of the form eζ and K[eA] are types if their constituent components

are types. �

As before, location types are allowed at most one capability for each channel.

Channel type are also constrained to have at most one read and one write ca-

pability. The final constraint on channel types is a consistency requirement. It
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TABLE 10 Partial Meet and Join Operators for Extended Types

For location types, KuK0 is undefined if there exists an a such that a:A 2 K and

a:A0

2 K0 and AuA0 is undefined. Otherwise:

KuK0

= fγ j γ 2 K or γ 2 K0

g

[ fa:A j a:A 2 K and a: – =2 K0

g

[ fa:A0

j a: – =2 K and a:A0

2 K0

g

[ fa:A00

j a:A 2 K and a:A0

2 K0 and A00

= AuA0

g

For channel types, AuA0 is undefined if any of the following hold:

rhζi 2 A and rhζ0

i 2 A0 and ζuζ0 undefined

whξi 2 A and whξ0

i 2 A0 and ξtξ0 undefined

rhζi 2 A and whξ0

i 2 A0 and ξ0

� ζ
whξi 2 A and rhζ0

i 2 A0 and ξ � ζ0

Otherwise the definition is:

AuA0

=a
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On channels, in order for frhζi;whξig u frhζ0

i;whξ0

ig to be defined, the

types must satisfy the following constraints. (In the figure, arrows indicat
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Using the assumption (A00

! A and A00

! A0), the induction hypothesis and

the fact that A00 is a type, we have:

ξtξ0 ζuζ0

ξ ζ

ξ0 ζ0

ξ00 ζ00

induction
//

assumption

''

O

O

O

O

O

O

O

O

O

O

assumption

77

o

o

o

o

o

o

o

o

o

o

A00 a type
//

induction
//

assumption
77

o

o

o

o

o

o

o

o

o

o

assumption
''

O

O

O

O

O

O

O

O

O

O

(*)
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We now demonstrate that no partial meet operator exists for PS types. To

make the counterexample readable, let us use the following abbreviations:

rhζi = chanfrhζig whζi= chanfwhζig rwhζi = chanfrhζi;whζig

There are three PS types of the form iohi, where io is an “i/o tag” (io ::= r
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T
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TABLE 12 Extended Runtime Errors

Rules e-eql, e-eqc and e-str from Table 7.

(e-move

00

) `Jk :: pKΓ
err00
7��! if Γ(k) � locfmoveg

(e-subc00) `J(νa)pKΓ
err00
7��! if Γ(k) � locfnewcg

(e-snd00) `Ja!hViqKΓ
err00
7��! if Γ

`

(V) �wobj(Γ(`;a))
(e-rcv00) `Ja?(X:ζ)pK∆

err00
7��! if robj(∆(`;a))� ζ

(e-comm

00

) `Ja!hVipKΓ j `Ja?(X:ζ)qK∆
err00
7��! if wobj(Γ(`;a))� robj(∆(`;a))

a valid type (and thus are not allowed by our type system) because the read and

write capabilities conflict (A
rw

� A
w

). If we did allow such types, however, then

we could find Γ, Y and q such that:

Γ `00 `Jc!(a)K
f:::;`:locfc:C;a:A

w

;:::gg

j `Jc?(x:A
rw

)x?(Y)qK
f:::;`:locfc:Cgg

But it is easy to see that this tagged term leads to a runtime error due to rule

e-comm

00; the type of the sent value and the type of the received value do not

match. It is appropriate that an error should occur here. The result of the com-

munication, `Ja?(Y)qK
f:::;`:locfc:C;a:A

rw

gg

, is clearly undesirable, since the read

capability on a has been fabricated. Note that if Γ(a) = A
w

, then subject reduc-

tion also fails as a result of this communication.

Example. As an example of the use of these extended types, consider a server

for read/write (get/put) cells similar to the counter server from Section 3.

S(h) ( �req?(z[y]) (νcell:L
cell

) z:y!hcelli j cell ::Cell(cell;0)

Here “Cell” represents the code for the cell, for example:

Cell(h;n)( (νs:int) s!hni j �g?(z[y]) s?(x) (s!hxi j z:y!hxi)

j �p?(z[y];v) s?(x) (s!hvi j z:y!hi)

Let us use the abbreviations for PS types introduced above. The allocation type

L
cell

of the cell location cell can then be written:

L
cell

= locfmove;newc;g:rwhζ
g

i;p:rwhζ
p

ig

ζ
g

= locfmoveg[whinti]

ζ
p

= (locfmoveg[whi]; int)

Location cell must be g.00277880195(i)]TJ
324.48 0 Td
[(on)-240.007(3.)10.0016]TJ
-280.32 -22 0.20 1 311./R57 0.24 Tf
4.56016 0 Td
(int)Tj
/R59 0.24 Tf
13.4398 0 Td
(i)Tj
/R79 0.24 Tf
4.56016 
29.l3356016 0 TE1tdoeTpf
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site. In many cases, it may be possible to establish this requirement statically,

thus making the dynamic matching redundant; however, our type system is not

powerful enough to do so. Suppose that we extend the language with a type for

“channels at w”: @wchanfζg. Consider the threads:

p = a?(z:loc) b?(x:@zchan)

q = (ν`[c]) a!h`i b!hci

The thread q creates a location ` with channel c, sends ` and then sends c. The

thread p, instead, waits to receive a location z and then to receive a channel x

at z. This code can be statically checked to guarantee that when x is received, x

is indeed located at z (i.e. `). However, if we have two copies of p running in

parallel with q and another thread, r,

r = (νk[d]) a!hki b!hdi

then it is no longer guaranteed that each copy of p will receive a matching lo-

cation and channel. To eliminate such problems, one might adopt the notion of

linear channels [19] and require that channels such as a and b have at most one

sender.

Type Extrusion. One limitation of our language is that names can be extruded,
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is not allowed by our syntax; we require all types to be closed. We might hope

for a cleverer solution, such as the following, where the original server sends a
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of work in concurrency theory; it is also a “special case” of extreme practical

importance.

The language of this paper can be considered “minimal” in the sense that

there is only one form of movement: code movement. We are also interested

in type systems for languages in which the only form of movement is location

movement. However, location movement, in a simple language such as Dπ, is not

powerful enough to express interaction between agents. This is because all inter-

action occurs within a location, and therefore interaction between locations is not

possible without some extension to the language. In variants of the distributed

join calculus [12, 26, 25], in addition to location movement, code movement is
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A Proofs

A.1 Proofs from Section 4.2

We first prove the Weakening Lemma. The result for systems, stated in the text,

relies on similar results for threads and values.

PROPOSITION (4.5).

(a) If Γ ` P and ∆� Γ then ∆ ` P.

(b) If Γ `w p and ∆� Γ then ∆ `w p.

(c) If Γ `w V:ζ and ∆� Γ then ∆ `w V:ζ.

Proof. All three results are proved, in a straightforward manner, by judgment

induction (i.e. by induction on the length of the type inference). We give one

example for each result.

(a) (t-run
s

) Suppose Γ ` `JpK because Γ ` `:loc and Γ `
`

p. Using the auxiliary

results we obtain ∆ ` `:loc and ∆ `
`

p. Using t-run
s

, we have ∆ ` `JpK.

(b) (t-r
t

) Suppose Γ `w u?(X:ζζ
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LEMMA A.2 (RESTRICTION).

(a) If Γ ` P and u =2 fid(P) then Γnu ` P.

(b) If Γ `w p and u =2 fid(p) [fwg then Γnu `w p.

(c) If Γ `w U:ξ and u =2 fid(U)[fwg then Γnu `w U:ξ.

Proof. In each case the result follows by a straightforward judgment induction.

We leave the details to the interested reader. �

As a corollary we have that typing is preserved by scope extrusion:

COROLLARY A.3. Suppose e does not appear free in Q. Then Γ ` (νe) (Q jP)

if and only if Γ ` Q j (νe)P

Proof. We examine the case when e is a channel; the case in which e is a location

is similar. Suppose Γ ` (νa:Λ) (Q jP). Then using t-newc
s

and t-str
s

, we have

that Γ;Λa `Q and Γ;Λa ` P. Applying Lemma A.2 to the first of these we obtain

(Γ;Λa) n a ` Q, i.e. Γ ` Q since a is new to Γ. Applying t-newc
s

to the second

statement we obtain Γ ` (νa:Λ) and therefore t-str
s

gives Γ ` Q j (νa:Λ)P.

The converse uses the same arguments, in the reverse direction. �

As a step toward proving subject reduction, note that closed terms are pre-

served by reduction.

LEMMA A.4. If P is closed and P�! P0 then P0 is closed.

Proof. By induction on the judgment P�! P0. �

The proof of subject reduction for the typing system depends, as is often

the case, on a substitution lemma. However in this case before the appropriate

version can be proved we need the following technical Lemma.

LEMMA A.5.

(a) If Γ ` k:K and Γ; z:K; zX:ζ `w p then Γ; kX:ζ `
wfj

k
=zjg

pfjk=zjg.

(b) If Γ ` k:K and Γ; z:K; zX:ζ `w U:ξ then Γ; kX:ζ `
wfj

k
=zjg

Ufjk=zjg:ξ.

Proof. For both results the proof is similar. Informally the proof proceeds, in the

case of threads, by taking a derivation of the judgment Γ; z:K; zX:ζ `w p, substitut-

ing k for z throughout and thereby obtaining a derivation of Γ; kX:ζ `
wfj

k
=zjg

pfjk=zjg.
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We can rewrite this as:

Γ `v V1:ζ1; :::;Vn:ζn and Γ; vX1:ζ1; :::; vXn:ζn `w U:ξ

Using induction we have:

Γ; vX1:ζ1; :::; v(Xn�1:ζn�1) `wfj

Vn
=Xn jg

UfjVn
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Finally, t-r00
t
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� r-move states `Ju ::pK �! kJpK. By supposition Γ ` `Ju ::pK. Then using

t-run
s

we have Γ `
`

u :: p. Then using t-move

t

, Γ `k p and therefore by t-run
s

Γ ` kJpK.

� r-comm states `Ja!hVipK j `Ja?(X:ζ
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A.4 Proofs from Section 6

The proofs of the following results extend immediately to the extended type sys-

tem: type specialization (Lemma 4.4), weakening (Proposition 4.5), substitution
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