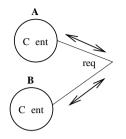
# **Assigning Types to Processes**

NOB KO YO HIDA and MA--HE HENNE Y AB - AC-- In w de area d str buted syste s t s now co on for higher-order code



 $\beta$ , and co un cat on co  $\beta$  Both these require a de in t on of substitution of values for variable



on part, A -

-o der ve the udge ent t s suf c ent to prove that for any w n dom $(\Delta \sqcap \Delta)$ ,  $\Gamma \vdash \Delta(w) \leq (\Delta \sqcap \Delta)(w)^-$ -here are three poss b t es for w t s e ther n dom $(\Delta) \cap$  dom $(\Delta)$ , n dom $(\Delta) -$  dom $(\Delta)$  or dom $(\Delta) -$  dom $(\Delta)^-$ In the rst case we have, fro the hypothes s, that  $\Gamma \vdash \Delta(w) \leq \Delta_i(w)$  and we ay app y nduct on on part A to obta n  $\Gamma \vdash \Delta(w) \leq \Delta$  (w)  $\sqcap \Delta$  (w) and the resu t fo ows, because n th s case ( $\Delta \sqcap \Delta$ )(w) =  $\Delta$  (w)  $\sqcap \Delta$  (w)<sup>-</sup>

-he other two poss b t es for w are s ar but s p er the nduct ve step s not requ red<sup>-</sup>

Parts C and D are a so proved s u taneous y th s t e by s u taneous nduct on on the de n t on of the operators  $\sqcap$  and  $\sqcup$ 

(Common)

$$\begin{array}{c} AL \quad \frac{\vdash \Gamma, u \tau, \Gamma' \cdot Env}{\Gamma, u \tau, \Gamma' \vdash u \tau} \quad (CON \quad \frac{\vdash \Gamma, Env}{\Gamma \vdash \tau nat} \quad etc^{-} \\ \\ S \quad & \\ S \quad & \\ \end{array} \\ \begin{array}{c} B_H \quad \frac{\Gamma \vdash P \cdot \rho \quad \Gamma \vdash \rho \leq \rho'}{\Gamma \vdash P \cdot \rho'} \quad & \\ \\ S \quad & \\ \end{array} \\ \begin{array}{c} CON \quad \frac{\vdash \Gamma \cdot Env}{\Gamma \vdash \tau nat} \quad etc^{-} \\ \\ \hline \\ \Gamma \vdash u \tau \quad \sigma' \end{array} \end{array}$$

## (Function)

$$\begin{pmatrix} A_{B} & H & \frac{\Gamma, X_{\iota} \sigma_{H} \vdash P_{\iota} \rho}{\Gamma \vdash \lambda(X_{\iota} \sigma_{H})P_{\iota} \sigma_{H} \rightarrow \rho} & (A_{PP_{H}} & \frac{\Gamma \vdash P_{\iota} \sigma_{H} \rightarrow \rho \quad \Gamma \vdash Q_{\iota} \sigma_{H}}{\Gamma \vdash PQ_{\iota} \rho} \\ \begin{pmatrix} A_{B} & N & \frac{\Gamma, x_{\iota} \sigma \vdash P_{\iota} \rho}{\Gamma \vdash \lambda(x_{\iota} \sigma)P_{\iota} (x_{\iota} \sigma) \rightarrow \rho} & (A_{PP_{N}} & \frac{\Gamma \vdash P_{\iota} (x_{\iota} \sigma) \rightarrow \rho \quad \Gamma \vdash u_{\iota} \sigma}{\Gamma \vdash Pu_{\iota} \rho\{u/x\}} \end{pmatrix}$$

## (Process)

$$\begin{array}{c} \begin{array}{c} \text{NIL} & \begin{array}{c} PA \\ \vdash \Gamma \cdot \text{Env} \\ \hline \Gamma \vdash \mathbf{0} \cdot [ \end{array} \end{array} & \begin{array}{c} \Gamma \vdash P , \cdot \pi \\ \hline \Gamma \vdash P \mid P \cdot \pi \end{array} & \begin{array}{c} \Gamma \vdash P \cdot \pi \\ \hline \Gamma \vdash P \cdot \pi \end{array} & \begin{array}{c} \Gamma \vdash P \cdot \pi \\ \hline \Gamma \vdash *P \cdot \pi \end{array} & \begin{array}{c} \Gamma \vdash P \cdot \pi \\ \hline \Gamma \vdash (va \cdot \sigma) P \cdot \pi / a \end{array} \\ \begin{array}{c} \begin{array}{c} O \\ \hline \Gamma \vdash V_i \cdot \tau_i & \tau_i = \sigma_i \Rightarrow \pi \vdash_{\Gamma} V_i \cdot \sigma_i \\ \hline \Gamma \vdash u \langle V, ..., V_n \rangle P \cdot \pi \end{array} & \begin{array}{c} \begin{array}{c} IN \\ \pi \vdash_{\Gamma} u \cdot (\tau, ..., \tau_n)^{\text{I}} \\ \hline \Gamma \vdash u \langle V, ..., V_n \rangle P \cdot \pi \end{array} & \begin{array}{c} \begin{array}{c} IN \\ \hline \Gamma \vdash u \langle V, ..., V_n \rangle P \cdot \pi \end{array} & \begin{array}{c} \begin{array}{c} IN \\ \hline \Gamma \vdash u \langle V, ..., V_n \rangle P \cdot \pi \end{array} & \begin{array}{c} \Gamma \vdash u (x \cdot \tau, ..., x_{n!} \cdot \tau_n \vdash P \cdot \pi, x \cdot \tau, ..., x_{n!} \cdot \tau_n \\ \hline \Gamma \vdash u (x \cdot \tau, ..., x_{n!} \cdot \tau_n) P \cdot \pi \end{array} \end{array}$$

FIG E -yp ng yste for  $\lambda \pi_v$ 

-he corresponding e nation APP<sub>N</sub> a ows dyna c channe instant at on nto types dur ng  $\beta$  reduct on If a ter *P* has a type (*x*<sub>1</sub>  $\sigma$ )  $\rightarrow \rho$ , we can ap p y a na e *a* whose type s ess than  $\sigma$  to *P*<sup>-</sup>-hen *a* s substituted for *x* n  $\rho$ <sup>-</sup>

$$\frac{\Gamma \vdash P\iota (x\iota \sigma) \to \rho, \quad \Gamma \vdash a\iota \sigma}{\Gamma \vdash Pa\iota \ \rho\{a/x\}}$$

As an exa p e of the use of th s ru e cons der the channe abstract on  $P \equiv \lambda(x \text{ nat})(x \langle \rangle | b$ 

s the process type which aps b to the sale type  $(int)^0$ —hen with the output rule, together with NIL and the abstract on rules, we can establish

$$\Delta_{ab} \vdash b \ \langle \ \rangle \mathbf{0} \boldsymbol{\iota} \ [\Delta_b]$$

and therefore

$$\Delta_{ab} \vdash a \ \langle b \ \langle \ \rangle \mathbf{0} \rangle \mathbf{0} \mathbf{0} \ [a \ \langle \Delta_b \rangle^{\mathsf{0}}$$

-HE INP - LE IN - he rue for pre x ng s a stra ghtforward genera sa t on of that n

$$\pi \vdash_{\Gamma} u (\tau)^{\mathrm{I}} \qquad \Gamma, x \tau \vdash P (\pi, x \tau)$$

An app cat on of the ru e O - g ves the udge ent

$$x \in (int)^{\mathrm{I}}, y \in (int)^{0}, z \in int \vdash y \langle z \rangle \in [\Delta_{xy}]$$

where  $\Delta_{xy}$  denotes the interface  $\{x_{\iota} (int)^{I}, y_{\iota} (int)^{0}\}^{-}$  An app cat on of the nput ru e  $\{x_{\iota} (int)^{I}, y_{\iota} (int)^{0} \vdash *x (z_{\iota} int) y \langle z \rangle_{\iota} [\Delta_{xy}]$ 

Now we ay app y the channe abstract on ru e  $AB_N$  tw ce to obta n the fo ow ng type for the forwarden

$$\vdash \mathsf{Fw}_{\mathfrak{l}} \ (\mathfrak{x}_{\mathfrak{l}} \ (\mathtt{int})^{\mathtt{I}}) \to (\mathfrak{y}_{\mathfrak{l}} \ (\mathtt{int})^{\mathtt{0}}) \to [\Delta_{\mathfrak{x}\mathfrak{y}}]$$

Let us now see how we can use this typing to assign a type to the process  $R_{a}$  a so d scussed n the Introduct on

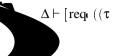
$$R \iff s \langle c \rangle c (y \cdot \tau_{fw}) (y a b)$$

For conven ence  $\tau_{fw}$  denotes the type ass gned to the forwarder and et us de ne

$$\Delta_R \stackrel{\text{def}}{=} \{ a_{\mathbf{i}} \; (\texttt{int})^{\mathtt{I}}, b_{\mathbf{i}} \; (\texttt{int})^{\mathtt{O}}, c_{\mathbf{i}} \; ($$

، م

e can now type the co b ned syste "By s proc n F gure," we now



×

ub ect educt on aga n t ay be v ewed as a general sation of Le  $a = S_{-1}$ 

LEMMA

| $a (x \iota \tau,, x_n \iota \tau_n) P \xrightarrow{\Gamma, \pi}_{err}$ |                                                                                                                                                       |                                     |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| $a \langle V,, V_n \rangle P \xrightarrow{\Gamma, \pi}_{err}$           | f no $\tau_i$ s $\tau$ $\Gamma$ $\vdash$ [ $a_i$ ( $\tau$ ,, $\tau_n$ ) <sup>0</sup> ] $\leq \pi$ and $\Gamma$ $\vdash$ $V_i$ , $\tau_i$ <sup>-</sup> |                                     |  |
| $P \xrightarrow{(\Gamma, a \sigma), \pi} err$                           | $P \xrightarrow{\Gamma,\pi} \text{ or } Q \xrightarrow{\Gamma,\pi}$                                                                                   | $P \xrightarrow{\Gamma,\pi}_{err}$  |  |
| $(\mathbf{v} a, \mathbf{\sigma}) P \xrightarrow{\Gamma, (\pi/a)} err$   | $P   Q \xrightarrow{\Gamma,\pi}_{err}$                                                                                                                | $*P \xrightarrow{\Gamma,\pi}_{err}$ |  |
| FIG = un t e errors                                                     |                                                                                                                                                       |                                     |  |

Ana ys ng the hypothes s we obta n

 $\begin{array}{ll} \Gamma, x_{\mathbf{i}} \ \mathbf{\sigma} \vdash P_{\mathbf{i}} \ [\Delta \ , x_{\mathbf{i}} \ \mathbf{\sigma}] & \text{w th } \Gamma, x_{\mathbf{i}} \ \mathbf{\sigma} \vdash \left[ u_{\mathbf{i}} \ (\mathbf{\sigma})^{\mathrm{I}} \right] \leq \left[ \Delta \ \right] \leq \left[ \Delta \right] & x \not\in \mathsf{fv}(\Delta \ ) \\ \Gamma \vdash Q_{\mathbf{i}} \ \left[ \Delta \ \right] & \text{w th } \Gamma \vdash \left[ u_{\mathbf{i}} \ (\mathbf{\sigma}')^{\mathrm{0}}, v_{\mathbf{i}} \ \mathbf{\sigma}' \right] \leq \left[ \Delta \ \right] \leq \left[ \Delta \right] \end{array}$  $\Gamma \vdash v_1 \sigma'^-$ 

Not ng  $x \notin fv(\sigma)$ , we can app y Channe narrow ng Le a  $\overline{}$ , to obta n  $\Gamma \vdash [u, (\sigma)^{I}] \leq [\Delta]^{-}$  -hen we have  $\Gamma \vdash \Gamma(u) \leq \Delta(u) \leq \Delta(u) \leq (\sigma)^{I}$  and  $\Gamma \vdash$ 

 $\Gamma(u) \leq \Delta(u) \leq \Delta(u) \leq (\sigma')^{\circ}, \text{ wh ch} \quad \text{p y } \Gamma \vdash \sigma' \leq \sigma^{-1}$ s ng subsu pt on we then have  $\Gamma \vdash v_i \sigma$  and so we can app y, ubst tut on Le  $\blacksquare$  a Le a  $\neg$  to obta n  $\Gamma \vdash P\{v/x\}_i [\Delta, x \sigma]\{v/x\}$ -By calculation this type s  $[\Delta] \sqcup [\mathfrak{n} \sigma]$  and we have  $\Gamma \vdash [\Delta] \sqcup [\mathfrak{n} \sigma] < [\Delta] \sqcup [\mathfrak{n} \sigma'] < [\Delta] \sqcup [\Delta] <$  $[\Delta]$ <sup>-</sup>Hence by subsu pt on we have the required  $\Gamma \vdash P\{v/x\}$   $[\Delta]^- \Box$ 

 $-ype_{S}$  afety Sout typ ng syste s an extens on of that for the  $\lambda$  ca cu us fro and that for the  $\pi$  ca cu us fro consequent y t guarantees the absence of the typ ca run t e errors assoc ated w th these anguages<sup>-</sup> ather than dup cate the for u at on of these nds of errors, which not ves the develope ent copic cated *tagging* notat on here we concentrate on the nove run t e type errors which our typ ng syste can catch<sup>-</sup>

Intu t ve y  $\Gamma \vdash P \in \pi$  should be created by a sum op n <sup>on</sup>, Dongy -d\_

| Syntax: others  | s fro F gure –                  |                                                        |
|-----------------|---------------------------------|--------------------------------------------------------|
| yste i          | $M, N, \ldots$ $\mathfrak{n} =$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |
| S <sub>er</sub> | $P,Q,\ldots$ $\alpha =$         | Spawn $(P) \mid \cdots$ as n F gure                    |

- YPED BEHA IO, AL EQ ALI-Y -ypes constrain the behav our of processes and the rienviron ents and consequently have an paction when the ribehav our should be deeled to be equivalent -yped behav oural equivalences have a ready been investigated for various processical culling in papers such as

Sequ va ence, where equa t es are **h** uenced by the presence of ne gra ned pro cess types<sup>-</sup> Invest gat on of such equ va ences s an interest ng research top c, part cu ar y n ts app cat on to the re ne ent of the context equa ty of we eave th s for future wor -

-YPE LIMI-A-ION One tat on of our typ ng syste s that, when a e var ab es n types can be abstracted by channe dependency types

×

(Free Names)

## Terms

 $fn(\mathbf{0}) = fn(l) = fn(x) = \emptyset \quad fn(a) = \{a\}$   $fn(P|Q) = fn(PQ) = fn(P) \cup fn(Q)$  fn(\*P) = fn(P)  $fn(u \ (x \in \tau \ ,...,x_n \in \tau_n)P)$  $= fn(u) \cup fn(\tau \ ) \cup ... \cup fn(P)$ 

۰ <sup>۱</sup>

G aca one, A, M stra, P-and Prasad, Operat ona and A gebra c, e ant cs for Fac a A y etr c Integrat on of Concurrent and Funct ona Progra ng S