
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Security Policies as Membranes in

Security Policies as Membranes in Systems for

Global Computing

D G, M H and V S

A. We propose a simple global computing framework, whose main concern is code migra-

tion. Systems are structured in sites, and each site is divided into two parts: a computing body, and

a membrane which regulates the interactions between the computing body and the external environ-

ment. More precisely, membranes are filters which control access to the associated site, and they also

rely on the well-established notion of trust between sites. We develop a basic theory to express and

enforce security policies via membranes. Initially, these only control the actions incoming agents

2 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

1 Introduction

Computing is increasingly characterised by the global scale of applications and

the ubiquity of interactions between mobile components. Among the main fea-

tures of the forthcoming “global ubiquitous computing” paradigm we list dis-

tribution and location awarness, whereby code located at specific sites acts ap-

propriately to local parameters and circumstances, that is, it is “context-aware”;

mobility, whereby code is dispatched from site to site to increase flexibility and

expressivity; openness, reflecting the nature of global networks and embody-

ing the permeating hypothesis of localised, partial knowledge of the execution

environment. Such systems present enormous difficulties, both technical and

conceptual, and are currently more at the stage of exciting future prospectives

than that of established of engineering practice. Two concerns, however, appear

to clearly have a ever-reaching import: security and mobility control, arising re-

spectively from openness and from massive code and resource migrations. They

are the focus of the present paper.

We aim at classifying mobile components according to their behaviour, and

at empowering sites with control capabilities which allow them to deny access

to those agents whose behaviour does not conform to the site’s policy. We see

every site of a system

k[[M |〉 P]]

as an entity named k and structured in two layers: a computing body P, where

programs run their code – possibly accessing local resources offered by the site

– and a membrane M, which regulates the interactions between the computing

body and the external environment. An agent P wishing to enter a site N must

be verified by the membrane before it is given a chance to execute in N. If

the preliminary check succeeds, the agent is allowed to execute, otherwise it is

rejected. In other words, a membrane implements the policy each site wants to

enforce locally, by ruling on the requests of access of the incoming agents. This

can be easily expressed by a migration rule of the form:

k[[Mk |〉 go l.P | Q]] ‖ l[[Ml |〉 R]] → k[[Mk |〉 Q]] ‖ l[[Ml |〉 P | R]] if Ml ⊢k P

The relevant parts here are P, the agent wishing to migrate from k to l, and l, the

receiving site, which needs to be satisfied that P’s behaviour complies with its

policy. The latter is expressed by l’s membrane, Ml. The judgement Ml ⊢k P

represents l inspecting the incoming code to verify that it upholds Ml.

Observe that in the formulation above Ml ⊢k P represent a runtime check

of all incoming agents. Because of our fundamental assumption of openended-

ness, such kind of checks, undesirable as they, cannot be avoided. In order to

Security Policies as Membranes in Systems for Global Computing 3

tics as efficient as possible, we adopt a strategy which allows for efficient agent

verification. Precisely, we adopt an elementary notion of trust, so that from the

point of view of each l the set of sites is consistently partitioned between “good,”

“bad,” and “unknown” sites. Then, in a situation like the one in the rule above,

we assume that l will be willing to accept from a trusted site k a k-certified digest

T of P’s behaviour. We then modify the primitive go and the judgement ⊢k as in

the refined migration rule below.

k[[Mk |〉 goTl.P | Q]] ‖ l[[Ml |〉 R]] → k[[Mk |〉Q]] ‖ l[[Ml |〉 P |R]] if Ml ⊢kT P

The notable difference is in Ml ⊢k
T

P. Here, l verifies the entire code P against

Ml only if it does not trust k, the signer of P’s certificate T. Otherwise, it suffices

for l to match Ml against the digest T carried by go together with P from k, so

effectively shifting work from l to the originator of P.

Our main concern in this paper is to put the focus on the machinery a mem-

brane should implement to enforce different kinds of policies. We first distill the

simplest calculus which can conceivably convey our ideas and still support a non-

trivial study. It is important to remark that we are abstracting from agents’ local

computations. These can be expressed in any of several well-known models for

concurrency, for example CCS [13] or the π–calculus [14]. We are concerned,

4

Security Policies as Membranes in Systems for Global Computing 5

where

• l is the site name

• P is the code currently running at l

• M is the membrane which implements the entry policy.

For convenience we assume that site names are unique in systems. Thus, in a

given system we can identify the membrane associated with the site named l by

Ml. We start with a very simple kind of policy, which we will then progressively

enhance.

D 2.1 (P). A policy is any finite subset of Act ∪ Loc. For two

policies T1 and T2, we write

T1 enforces T2

whenever T1 ⊆ T2. �

Intuitively an agent conforms to a policy T at a given site if

• every action it performs at the site is contained in T

• it will only migrate to sites whose names are in T.

For example, conforming to the policy {info, req, home}, where info, req

are actions and home a location, means that the only actions that will be per-

formed are from the set {info, req} and migration will only occur, if at all, to

the site home. With this interpretation of policies, our definition of the predi-

cate enforces is also intuitive; if some code P conforms to the policy T1 and

T1 enforces T2 then P also automatically conforms to T2.

The purpose of membranes is to enforce such policies on incoming agents.

In other words, at a site l[[M |〉Q]] wishing to enforce a policy Tin, the membrane

M has to decide when to allow entry to an agent such as goTl.P from another

site. There are two possibilities.

• The first is to syntactically check the code P against the policy Tin; an imple-

mentation would actually expect the agent to arrive with a proof of this fact,

and this proof would be checked.

• The second would be to trust the agent that its code P conforms to the stated

T and therefore only check that this conforms to the entry policy Tin. Assum-

ing that checking one policy against another is more efficient than the code

analysis, this would make entry formalities much easier.

Deciding on when to apply the second possibility presupposes a trust manage-

ment framework for systems, which is the topic of much current research. To

6

Security Policies as Membranes in Systems for Global Computing 7

(tc-empty)

⊢ nil : T

(tc-act)

⊢ P : T

⊢ a.P : T
a ∈ T

(tc-mig)

⊢ P : T′

⊢ goT′ l.P : T
l ∈ T

(tc-repl)

⊢ P : T

⊢ !P : T

(tc-par)

⊢ P : T ⊢ Q : T

⊢ P | Q : T

F 4. Typechecking incoming agents

The interesting reduction rule is the last one, (r-mig), governing migration; the

agent goTl.P can migrate from site k to site l provided the predicate Ml ⊢k
T

P is

true. This ‘enabling’ predicate formalises our discussion above on the role of the

membrane Ml, and requires in turn a notion of code P satisfying a policy T,

⊢ P : T

With such a notion, we can then define Ml ⊢k
T

P to be:

if Ml
t(k) = good then (T enforces Mp

l) else ⊢ P : Mp
l (1)

In other words, if the target site l trusts the source site k, it trusts that the professed

policy T is a faithful reflection of the behaviour of the incoming agent P, and

then entry is gained provided that T enforces the entry policy Mp
l (i.e., in this

case, T ⊆ Mp
l). Otherwise, if k can not be trusted, then the entire incoming code

P has to be checked to ensure that it conforms to the entry policy, as expressed

by the predicate ⊢ P : Mp
l .

In Figure 4 we describe a simple inference system for c(i)1.9698(s)-4.13446(65(s)-4.13531(t)1.97065(e)0.6773678.678157(s)-4.6(i)1.96725(c)1.55.38-1.873655TJ
011)1.96725(s)-4.13531]TJhoJ
/5en

8 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

cies, or more simply by checking the professed policy of trusted agents. The

extent to which this strategy works depends, not surprisingly, on the quality of a

site’s trust management.

E 2.1. Let home be a site name with the following trust function

Mh
t : {alice,bob, secure} 7→ good .

Consider the system

S
△
= home[[Mh |〉Ph]] ‖ bob[[Mb |〉Pb]] ‖ alice[[Ma |〉Pa]] ‖ secure[[Ms |〉Ps]]

in which the entry policy of home, Mp
h, is {info, req, secure}, and that of

secure, Mp
s, is {give, home}. Since Mh

t (bob) = good, agents migrating from

bob to home are trusted and only their digests are checked against the entry

policy Mp
h. So, if Pb contains the agent

goT1
home.(take.Q)

where T1 enforces Mp
h, then the entry policy of home will be transgressed.

As another example, suppose alice, again trusted by home, contains the

agent

goT1
home.(info.goT2

secure.(take.Q))

where T2 is some policy which enforces the entry policy of secure, Mp
s. Again

because T1 enforces Mp
h , the migration is allowed from alice to home,

and moreover the incoming agent conforms to the policy demanded of home.

The second migration of the agent is also successful if secure trusts home:

Ms
t (home) = good and therefore only the digest T2 is checked against the entry

policy of secure. We then have the reduction

S →∗ home[[. . .]] ‖ bob[[. . .]] ‖ alice[[. . .]] ‖ secure[[Ms |〉 take.Q | Ps]]

in which now the entry policy of secure has been foiled. �

The problem in this example is that the trust knowledge of home is faulty; it

Security Policies as Membranes in Systems for Global Computing 9

(wf-empty)

⊢ 0 : ok

(wf-g.site)

⊢ P : Mp

⊢ l[[M |〉 P]] : ok
l trustworthy

(wf-par)

⊢ N1 : ok, ⊢ N2 : ok

⊢ :

10

Security Policies as Membranes in Systems for Global Computing 11

the residual of those actions. The rules for the judgements

P
α
−→ Q

where we let α to range over Act ∪ Loc, are given in Figure 6, and are all

straightforward. These judgements are then extended to

P
σ
−→ Q

where σ ranges over (Act ∪ Loc)∗, in the standard manner: σ = α1, . . . , αk,

when there exists P0

12 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

(tc-empty)

⊢ nil : T

(tc-act)

⊢ P : T

⊢ a.P : T ∪ {a}

(tc-mig)

⊢ P : T′

⊢ goT′ l.P : T ∪ {l}

(tc-par)

⊢ P : T1 ⊢ Q : T2

⊢ P | Q : T1 ∪ T2

(tc-repl)

⊢ P : T

⊢ !P : T′
Tω enforces T′

F 7. Typechecking with policies as Multisets

consider the system

S
△
= mail serv[[Mms |〉 Pms

Security Policies as Membranes in Systems for Global Computing 13

can be, in general, freely unfolded; hence, the actions they intend to locally per-

form can be iterated arbitrarily many times. For instance, agent

P
△
= ! send

satisfies policy T
△
= {sendω}. Notice that the new policy satisfaction judge-

ment prevents the spamming virus of Example 3.1 from typechecking against

the policy of mail serv defined in Example 3.2.

The analysis of the previous section can also be repeated here but an appro-

priate notion of well-formed system is more difficult to formulate. The basic

problem stems from the di

14

Security Policies as Membranes in Systems for Global Computing 15

ǫ denotes the empty sequence of characters, α ranges over Act ∪ Loc, ‘.’ de-

notes concatenation, ⊙ is the interleaving (or shuffle) operator and ⊗ is its closure.

Intuitively, if e represents the language L, then e

16 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

We want to conclude this section with two interesting properties enforceable

by using automata.

E 3.4. [Lock/Unlock] We have two actions, lock and unlock, with the

constraint that each lock must be always followed by an unlock. Let Σl =

Σ − {lock} and Σu = Σ − {unlock}. Thus, the desired policy (written using a

regular expression formalism) is

(Σ∗l(ǫ + lock.Σ
∗
u.unlock)

∗

18 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

(ti-empty)

 nil : ∅

(ti-act)

 P : T

 a.P : T ∪ {a}

(ti-mig)

 P : T′

Security Policies as Membranes in Systems for Global Computing 21

22 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

Therefore coherence, which is defined in terms of the trustworthiness of sites, is

also preserved by reduction.

We outline the proof when the inference is deduced using rule (r-mig), a

typical example. By hypothesis, ⊢ k[[Mk |〉 goTl.P | Q]] : ok; this implies that

⊢ k[[Mk |〉Q]] : ok. Thus, we only need to prove that ⊢ l[[Ml |〉R]] : ok and Ml ⊢k
T

P

imply ⊢ l[[Ml |〉 P |R]] : ok. We have two possible situations:

l . Judgment ⊢ R : Mp
l holds by hypothesis; judgment ⊢ P : Mp

l is

implied by Ml ⊢k
T

P. Indeed, because of the coherence hypothesis, Ml
t(k) <:

Mk
t (k). If Mk

t (k) , good, then Ml ⊢k
T

P is exactly the required ⊢ P : Mp
l .

Otherwise, we know that ⊢ goTl.P : Mp
k ; by rule (tc-mig) this implies that

⊢ P : T. Judgment ⊢ P : Mp
l is obtained by using Lemma A.1, since Ml ⊢k

T
P

is defined to be T enforces Mp
l (see (1) in Section 2.2). Thus, by using

(tc-par), we obtain the desired ⊢ P|R : Mp
l .

l . This case is simple, because rule (wf-u.site) always allows

to derive ⊢ l[[Ml |〉 P |R]] : ok.

The case when (r-act) is used is similar, although simpler, and the case when

rule (r-par) is used requires a simple inductive argument. Finally to prove

the case when rule (r-struct) is used, we need to know that coherency of

systems is preserved by structual equivalence; the proof of this fact, which is

straightforward, is left to the reader. �

P T 2.2 [S]: Let l[[M |〉 P]] be a agent site in N such that

P
σ
−→ P′. We have to prove that act(σ) enforces Mp. The statement is proved

by induction over the length of σ. The base case, when σ = ǫ, is trivial since

act(ǫ) = ∅.

So we may assume σ = ασ′ and P
α
−→ P′′

σ′

−→ P′. Let us consider P
α
−→ P′′;

by induction on
α
−→ , we can prove that α ∈ Mp and that ⊢ l[[M |〉 P′′]] : ok. If

the transition has been inferred by using rule (lts-act), then P = a.P′′ and, by

rule (wf-g.site), we have that ⊢ a.P′′ : Mp; by definition of rule (tc-act), we

have the desired a ∈ Mp and ⊢ P′′ : Mp. When (lts-mig) is used the argument

is similar, and all other cases follow in a straightforward manner by induction.

Thus, we can now apply induction on the number of actions performed in

P′′
σ′

−→ P′ and obtain that act(σ′) enforces Mp. This sufficies to conclude that

act(σ) = (act(σ′) ∪ {α}) enforces Mp. �

A.2 Proofs of Section 3.1

The proofs given in Appendix A.1 can be easily adapted to the setting in which

entry policies are multisets. We outline only the main changes. First recall that

the judgments ⊢ P : T must be now inferred by using the rules in Figure 7 and

Security Policies as Membranes in Systems for Global Computing 23

rule (wf-g.siteM) is used for well-formedness. Then, Lemma A.1 remains true

in this revised setting.

P T 3.1 [S R]: A straightforward adaptation of

the corresponding proof in the previous section. The only significant change is

to the case when a replication is unfolded via the rule (r-struct), i.e.

N
△
= l[[M |〉 !P | Q]] ≡ l[[M |〉 P | !P | Q]] → N′′ ≡ N′

By hypothesis, ⊢ !P : Mp; therefore, by definition of rule (tc-repl), we have

that ⊢ P : T for some T such that Tω enforces Mp. Since T enforces Tω and

because of Lemma A.1, we have that ⊢ l[[M |〉 P | !P | Q]] : ok. By induction,

⊢ N′′ : ok. It is easy to prove that this sufficies to obtain the desired ⊢ N′ : ok. �

P T 3.2 [S]: From the rule (wf-g.siteM) we know that

⊢ Pi : Mp, for all i = 1

24 Daniele Gorla, Matthew Hennessy and Vladimiro Sassone

Proposition.

P A.2.

1. A1 enforces A2 can be calculated in polynomial time

2. ⊢ P : A is decidable, but it is super-exponential

Proof:

1. Let Ai = (S i,Σ, s
i
0
, Fi, δi) and let Li = Acp(Ai). By definition, we have to

check whether L1 ⊆ L2 or not. This is equivalent to check whether L1 ∩ L2 =

∅. The following steps have been carried on by following [10].

(a) calculate the automaton associated to L2. This can be done in O(|S 2|) and

the resulting automaton has |S 2| states.

(b) calculate the automaton associated to L1∩L2. This can be done in O(|S 1|×

|S 2| × |Σ|) and creates an automaton A with |S 1| × |S 2| states.

(c) Checking the emptyness of L1 ∩ L2 can be done by using a breath-first

search that starts from the starting state of (the graph underlying) A and

stops whenever a final state is reached. If no final state is reached, L1∩L2

is empty. This can be done in O(|S 1| × |S 2| × |Σ|).

Thus, the overall complexity is O(|S 1| × |S 2| × |Σ|).

2. It has been proved in [7] that each CRE e can be represented by a (labelled)

Petri net, in that the language accepted by the Petri net is lang(e). Now,

we can easily construct a DFA accepting the complement of the language

accepted by A (see item (a) of the previous proof). Now, we can construct

the product between this DFA (that can be seen as a Petri net) and the Petri

net associated to CRE(P); this Petri net accepts lang(CRE(P))∩Acp(A) (see

[17]). Now, the emptyness of this language can be solved with the algorithm

for the reachability problem in corresponding Petri net. This problem has

been proved decidable [12] and solvable in double-exponential time [3]. �

We now prove the subject reduction theorem in the setting whe\
P :

Security Policies as Membranes in Systems for Global Computing 25

Proof: Trivial. �

P T 3.1 [S R]: Now ⊢ N : ok relies on rule

(wf-g.siteA). Again, the proof is by induction on the inference of N → N′.

26

Security Policies as Membranes in Systems for Global Computing 27

[5] U. Erlingsson and F. Schneider. SASI Enforcement of Security Policies: A Retrospective. In

Proc. of New Security Paradigms Workshop, pages 87–95. ACM, 1999.

[6] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents. In

