

2 Matthew Hennessy and James Riely

may be transmitted on hannels inludes hannel names themselves; this,

together with the ability to dynamially reate new hannel names, gives

the language its desriptive power.

Within the setting of the �-alulus we wish to investigate the use

of types to enfore seurity poliies. To failitate the disussion we ex-

tend the syntax with a new onstrut to represent a proess running at a

given seurity learane, �J

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 3

appropriate.

This poliy does not rule out the possibility of information leaking

indiretly from high seurity to low seurity prinipals. Suppose h is a

high hannel and hl is a hannel with high-level write aess and low-level

read aess in:

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

This system an be well-typed although there is some impliit information

ow from the high seurity agent to the low seurity one; the value reeived

on the high level hannel h an be determined by the low level proess Q.

It is diÆult to formalize exatly what is meant by impliit information

ow and in the literature various authors have instead relied on non-

interferene, [14, 25, 11, 26℄, a onept more amenable to formalization,

whih ensures, at least informally, the absene of impliit information ow.

To obtain suh results for the �-alulus we need, as the above example

shows, a striter seurity poliy, whih we refer to as the I-seurity poliy.

This allows a high level prinipal to read from low level resoures but not

to write to them. Using the terminology of [2, 7℄:

� write up: a proess at level � may only write to hannels at level � or

above

� read down: a proess at level � may only read from hannels at level

� or below.

In fat the type inferene system remains the same and we only need

onstrain the notion of type. In this restrited type system well-typing,

� P , ensures a form of non-interferb73.8398 0 Td
(osystem)Tjfa

4 Matthew Hennessy

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 5

Figure 2 Labelled Transition Semantis

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

(e

:

e

C)a?v

������! Pfj

v

=Xjg

~ =2 fn(P)

(l-open)

P

(~

:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-txt)

P

�

�! P

0

�P

�

�! �P j P

0

�JP K

�

�! �JP

0

K

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

a set of basi values BV

�

; we use bv to range over base values. We require

that all syntati sets be disjoint.

The input onstrut `u?(X

:

A)P ' binds all variables in the pattern X

while the onstrut `(new a

:

A) P ' binds names and assoiated with these.

We have the usual notions of free and bound names and variables, �-

equivalene and substitution. We identify terms up to �-equivalene. Let

fn(P) and fv(P) denote the set of free names and variables, respetively, of

the term P . We use `Pfj

v

=Xjg' to denote the substitution of the identi�ers

ourring in the value v for the variables ourring in the pattern X. For

`Pfj

v

=Xjg' to be well-de�ned X and v must have the same struture; to

avoid unneessary ompliations we assume that a variable an our at

most one in a pattern. The binding onstruts have types assoiated

with them; these will be explained in Setion 3 but are ignored for the

moment. In general these types (and the various seurity annotations)

will be omitted from terms unless they are relevant to the disussion at

hand.

6 Matthew Hennessy and James Riely

The behaviour of a proess is determined by the interations in whih

it an engage. To de�ne these, we give a labelled transition semantis

(LTS) for the language. The set At of labels, or ations, is de�ned as

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 7

this end, Pre-apabilities and pre-types are de�ned as follows:

ap ::= Pre-Capability

w

�

hAi �-level proess an write values with type A

r

�

hAi �-level proess an read values with type A

A ::= Pre-Type

B

�

Base type

fap

1

; : : : ; ap

k

g Resoure type (k � 0)

(A

1

; : : : ;A

k

) Tuple type (k � 0)

We will tend to abbreviate a singleton set of apabilities, fapg,�

8 Matthew Hennessy and James Riely

Figure 3 Runtime Errors

(e-rd) �Ja?(X)P K

�

7�! err if � � � implies for all A, r

�

hAi =2 �(a)

(e-wr

1

) �Ja!hviK

�

7�! err if � � � implies for all A, w

�

hAi =2 �(a)

(e-wr

2

) �Ja!hviK

�

7�! err if bv 2 v, bv 2 B

�

and � 6� �

(e-str)

P

�

7�! err

P jQ

�

7�! err

P

�

7�! err

�JP K

�

7�! err

P � Q; P

�

7�! err

Q

�

7�! err

P

�;a

:

A

7����! err

(newn

:

A) P

�

7�! err

!hlhi although intuitively it involves a seurity leak; a low seurity

agent an read from a hannel whih has at least some apability

whih should only be aessible to high seurity prinipals. However

it is straightforward to plae it in a ontext in whih a seurity leak

ours: !hlhi j botJ?(x) x!hviK: Thus our typing system will also be

required to rule out suh proesses. �

3 Resoure Control

Our typing system will apply only to ertain seurity poliies, those in

whih the pre-types are in some sense onsistent. Consisteny is imposed

using a system of kinds: the viK

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 9

For eah �, let RType

�

be the least set that satis�es:

(rt-wr)

A 2 RType

�

fw

�

hAig 2 RType

�

� � �

(rt-rd)

A 2 RType

�

fr

�

hAig 2 RType

�

� � �

(rt-wrrd)

A 2 RType

�

A

0

2 RType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 RType

�

� � �

�

0

� �

A <

:

A

0

(rt-base)

B

�

2 RType

�

� � �

(rt-tup)

A

i

2 RType

�

(8i)

(A

1

; : : : ;A

k

) 2 RType

�

Let RType be the union of the kinds RType

�

over all �. �

Note that if � � � then RType

�

� RType

�

. Intuitively, low level values

are aessible to high level proesses. However the onverse is not true.

For example w

top

hi 2 RType

top

but w

top

hi is not in RType

bot

. Note also

that there is no relation between subtyping and aessibility at a given

seurity level. For example:

w

bot

hi 2 RType

bot

and fw

bot

hi; r

top

hig <

:

r

bot

hi but fw

bot

hi;w

top

hig 62 RType

bot

r

bot

hi 2 RType

bot

and r

bot

hi <

:

r

top

hi but r

top

hi 62 RType

bot

The ompatibility requirement between read and write apabilities in

a type (rt-wrrd), in addition to the typing impliations disussed in

[23℄, also has seurity impliations. For example suppose r

bot

hB

�

i and

w

top

hBi are apabilities in a valid hannel type. Then apriori a high level

proess an write to the hannel while a low level proess may read from

it. However the only possibility for � is bot, that is only low level values

may be read. Moreover the requirement B <

:

B

�

implies that B must also

be B

bot

. So although high level proesses may write to the hannel they

may only write low level values.

Remark. Most of the restritions imposed on types are essential to ahiev-

ing Subjet Redution, but a few are not. First, Subjet Redution still

holds if we weaken (u-wr) to: w

�

hAi <

:

w

�

hBi if B <

:

A and � � �.

Were we to adopt this rule, it would be true that every proess typable at

level � would also be typable at level �, for � � �. Given our de�nition,

this is not true. Nonetheless, every proess typable at � an be trivially

rewritten so that it is typable at � given our de�nition (one must sim-

ply surround output ations with expliit seurity restritions). We have

10 Matthew Hennessy and James Riely

Figure 4 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A `

�

P

� ` u

:

r

�

hAi

� `

�

u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

(t-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(t-sr)

� `

�u�

P

� `

�

�JP K

(t-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(t-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

adopted the stronger rule beause it is neessary in the next setion and

results in no substantive loss of expressivity.

Seond, we have limited types to ontain at most one read and one

write apability. We have done so to simplify the proofs, partiularly in

the next setion. This learly results in a loss of expressiveness. We have

yet to �nd, however, a ompelling example that requires a resoure to

have more than one read or one write apability. It is usually sensible to

simply take the meet. �

Proposition 3.2. For every �, RType

�

is a preorder with respet to <

:

,

with both a partial meet operation u and a partial join t.

Proof. Straightforward adaptation of Proposition 6.2 of [23℄. The partial

operations u and t are �rst de�ned by strutural indution on types.

Typial lauses are

r

�

hAi u r

�

0

hA

0

i = r

�u�

0

hA uA

0

i

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

0

hAi = r

�t�

0

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

One an then show, by indution on the de�nitions, that:

A 2 RType

�

and A 2 RType

�

0

implies A u B 2 RType

�u�

0

and

A t B 2 RType

�t�

0

.

Finally it is straightforward to show that u and t, de�ned in this manner,

are indeed partial meet and partial join operators. �

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 11

We now disuss the typing system, whih is de�ned using restrited

seurity poliies, alled type environments. A type environment is a �nite

mapping from identi�ers (names and variables) to types. We adopt some

standard notation. For example, let `�; u

:

A' denote the obvious extension

of �; `�; u

:

A' is only de�ned if u is not in the domain of �. The subtyp-

ing relation <

:

together with the partial operators u and t may also be

extended to environments. For example � <

:

� if for all u in the domain

of �, �(u) <

:

�(u). The partial meet enables us to de�ne more subtle

extensions. For example �ufu

:

Ag may be de�ned even if u is already in

the domain of �. It is well de�ned when �(u) uA exists, in whih ase it

maps u to this type. We will normally abbreviate the simple environment

fu

:

Ag to u

:

A and moreover use v

:

A to denote its obvious generalisation

to values; this is only well-de�ned when the value v has the same struture

as the type A.

The typing system is given in Figure 4 where the judgements are of

the form `� `

�

P '. If � `

�

P we say that P is a �-level proess. Also, let

`� ` P ' abbreviate `� `

top

P '.

Intuitively `� `

�

P ' indiates that the proess P will not ause any

seurity errors if exeuted with seurity learane �. The rules are very

similar to those used in papers suh as [23, 21℄ for the standard IO typing

of the �-alulus. Indeed the only signi�ant use of the seurity levels is

in the (t-in) and (t-out) rules, where the hannels are required to have

a spei� seurity level. This is inferred using auxiliary value judgements,

of the form � ` v

:

A. It is interesting to note that seurity levels play no

diret role in their derivation. One might expet that the judgements for

values would need to ensure that a value written to a hannel be aessible

at the appropriate seurity level. This job, however, is already handled

by our de�nition of types. For example, in order for w

�

hAi to be a type,

A must be a type aessible to �.

The typing system enjoys many expeted properties, the proof of whih

we leave to the reader.

Proposition 3.3.

� (Speialization) � ` v

:

A and A <

:

B then � ` v

:

B

� (Weakening) � `

�

P and � <

:

� then � `

�

P

� (Restrition) �; u

:

A `

�

P and u 62 fv(P) [fn(P) implies � `

�

P: �

The main tehnial tool required for Subjet Redution is, as usual, a

substitution result.

Lemma 3.4 (Substitution). If � ` v

:

A then

12 Matthew Hennessy and James Riely

� � `

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 13

(t-str), followed by (t-new), gives the required � `

�

(new E(�)) (P

0

jQ

0

).

�

We an now prove the �rst main result:

Theorem 3.6 (Type Safety). If � ` P then for every losed ontext

C[℄ suh that � ` C[P ℄ and every Q suh that C[P ℄

�

�!

�

Q we have

Q

�

7�X�! err

Proof. By Subjet Redution we know that � `

top

Q and therefore it is

suÆient to prove that � `

top

Q implies Q

�

7�X�! err. In fat we prove the

ontrapositive, Q

�

7�! err implies � 6`

top

Q by indution on the de�nition

of Q

�

7�! err.

This is a straightforward indutive proof on the derivation ofQ

�

7�! err.

For example onsider the ase (e-rd). Suppose that �Ja?(X)P K

�

7�! err

beause � � � implies for all A, r

�

hAi =2 �(a). By supposition, we have

that �(a) either has no read apability or it has a read apability at level

Æ, where Æ 6� �. In either ase, the judgement � `

�

a?(X)P annot be

derived, and therefore � `

top

�Ja?(X)P K is also underivable. �

We end this setion with a brief disussion on the use of the syntax

�JP K in our language. We have primarily introdued it in order to disuss

typing issues. Having de�ned our typing system we may now view �JP K

simply as notation for the fat that, relative to the urrent typing envi-

ronment �, the proess P is well-typed at level �, i.e. � `

�

P . Tehnially

we an view �JP K to be struturally equivalent to P , assuming we are

working in an environment � suh that � `

�

P . This will be formalised in

Setion 5.

4 Information Flow

We have shown in the previous setions that, in well-typed systems, pro-

esses running at a given seurity level an only aess resoures appropri-

ate to that level. However, as pointed out in the Introdution this does not

rule out (impliit) information ow between levels. Consider the following

system

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

(?)

exeuting in an environment in whih h is a top-level read/write hannel

and hl is a top-level write and bot-level read hannel. This system an be

well-typed, using R-types, so the proesses only aess resoures appro-

priate to their seurity level. Nevertheless there is some impliit ow of

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 15

top

q

h?(x) if x = 0 then bot

16 Matthew Hennessy and James Riely

Here �

�

is some form of behavioural equivalene that is sensitive only to

behaviour of proesses that are �-level or lower. It turns out that suh a

result is very dependent on the exat formulation used, as the following

example illustrates.

Let A denote the type fw

bot

hi; r

bot

hig and B denote fr

bot

hig. Fur-

ther, let � map a and b to A and B, respetively, and n to the type

fw

bot

hAi; r

bot

hAig. Now onsider the terms P and H de�ned by

P (botJn!hai j n?(x

:

A) x!hiK H (topJn?(x

:

B) b?(y) 0K

It is very easy to hek that � P;H and that H is bot-free. Note that in

the term P jH there is ontention between the low and high-level proesses

for who will reeive a value on the hannel n. This means that if we were

to base the semanti relation � on any of strong bisimulation equivalene,

weak bisimulation equivalene, [18℄, or must testing, [20℄, we would have

P j 0 6�

�

P jH

The essential reason is that the onsumption of writes an be deteted;

the redution

P jH

�

�! botJn?(x

:

A) x!hiK j topJb?(y) : 0K

annot be mathed by P j0. Using the terminology of [20℄, P j0 guarantees

the test botJa?(x)!!hiK whereas P jH does not.

Even obtaining results with respet tomay testing, de�ned in Setion 5,

is deliate. If we allowed synhronous tests then we would also have:

P j 0 6�

�

P jH

Let T be the test botJb!hi!!hiK. Then P j H j T may eventually produe

an output on ! whereas P j 0 jT annot. However, sine our language is

asynhronous, suh tests are not allowed.

In the following setion, we prove a non-interferene result using may

testing on proesses typable using I-types.

5 Noninterferene up to May Testing

May equivalene is de�ned in terms of tests. A test is a proess with an

ourrene of a new reserved resoure name !. We use T to range over

tests, with the typing rule �

�

!!hi for all �. When plaed in parallel

with a proess P , a test may interat with P , produing an output on !

if some desired behaviour of P has been observed.

Definition 5.1. We write T+ if T

�

�!

�

T

0

, where T

0

has the form

(new ~) (!!hi j T

00

) for some T

00

and ~. �

Information

18 Matthew Hennessy and James Riely

Figure 5 Context LTS

(-red)

P

�

�! P

0

� . P

�

�!

�

� . P

0

(-out)

� a

:

r

Æ

hBi

� . a!hvi

a!v

��!

�

� . 0

Æ � �

(-in)

� a

:

w

Æ

hBi �; ~

:

~

C v

:

B

� . a?(X

:

A)P

(e

:

e

C)a?v

������!

�

�;e

:

e

C . Pfj

v

=Xjg

Æ � �

~ =2 fn(P)

(-open)

� . P

(~

:

~

C)a!v

�����!

�

�

0

. P

0

� . (new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������!

�

�

0

; b

:

B . P

0

b 6= a

b 2 fn(v)

(-txt)

� . P

�

�!

�

�

0

. P

0

� . �P

�

�!

�

�

0

. �P j P

0

� . �JP K

�

�!

�

�

0

. �JP

0

K

� . P

�

�!

�

�

0

. P

0

� . P jQ

�

�!

�

�

0

. P

0

jQ

� . Q j P

�

�!

�

�

0

. Q j P

0

bn(�) 62 fn(Q)

� . P

�

�!

�

�

0

. P

0

� . (new a

:

A) P

�

�!

�

�

0

. (new a

:

A) P

0

a 62

n

(�)

Let T be a test suh that �

�

T . Then P an interat with T

by performing the ation � and evolving to P

0

. As a result of this

interation, the apabilities of the ontext may be inreased, as

reeted in �

0

.

The modi�ed LTS is de�ned in Figure 5 and the rules are straightfor-

ward. However note that in the rule (-out) it is understood that the

environment already knows the value v being output; it is only in the rule

(-open) where the environment learns new information.

Some properties of this modi�ed LTS are easy to establish. For exam-

ple in �.P

�

�!

�

�

0

.P

0

the new environment �

0

is ompletely determined

by � and the ation �. If � is � then �

0

oinides with �; otherwise it is

� augmented with the type environment E(�), the bound names together

with their delared types. For this reason the following Lemma is easily

established:

Lemma 5.4. � . P

�

�!

�

�

0

. P

0

and � P implies �

0

 P

0

.

Information Flow vs. Resoure

20 Matthew Hennessy and James Riely

Note that in this Lemma the requirement � P is essential to ensure

that if T reeives a value v then that value is ompatible with the type

environment �.

May testing is determined by the traes, s, t, in VAt

�

whih proesses

an perform. Let � represent the empty trae. The notion of omplemen-

tary ations lifts element-wise to traes, s. The names in a trae

n

(s) is

de�ned as the union of the names in the individual ations; likewise the

bound names in a trae bn(s) is de�ned as the union of the bound names

in the individual ations.

Definition 5.7 (Traes). Let � . P

s

=)

�

�

0

. P

0

be the least relation

suh that:

(tr-�)

� . P

�

=)

�

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 21

Definition 5.9. (Asynhronous traes) Let �.P

s

=)

a

�

�

0

.Q be the least

relation whih, in addition to the lauses in De�nition 5.7, satis�es

(-ain)

� a

:

w

Æ

hBi;

�; ~

:

~

C v

:

B;

�; ~

:

~

C . P j ÆJa!hviK

s

=)

a

�

� . Q

� . P

(e

:

e

C)a?v:s

======)

a

�

�

0

. Q

Æ � �

~ =2 fn(P)

�

The ability to ompose asynhronous traes depends on the fat that

22 Matthew Hennessy and James Riely

� �JP K

(~

:

~

Ca!v)

�����! �JP

0

K beause P

(~

:

~

Ca!v)

�����! P

0

.

�

�

�JP K implies �

�u�

P and so by indution

P �

�

(new ~

:

~

C) (ÆJa!hviK j P

0

)

for some Æ � � u �. Using the rules (s-srnew)(s-srsr) and (s-srpar)

we an then show �JP K �

�

(new ~

:

~

C) (� u ÆJa!hviK j �JP

0

K).

�

Proposition 5.12 (Trae Composition). Suppose �

�

T . �

uu

�

(new ~

:

� ~ �Ja!hviK j �

24 Matthew Hennessy and James Riely

Proof. The proof is by indution on the derivation of � . P jH

s

=)

a

�

. We

examine the most interesting ases.

� � . P jH

�

�!

�

� . R

s

=)

a

�

.

The most important ase here is when there is ommuniation be-

tween P and H . Here P

�

�! P

0

, H

�

�! H

0

, R is (new ~

:

~

C) (P

0

jH

0

),

where ~ are the bound variables in �. There are two possibilities.

{ Output from P to H ; � has the form (~

:

~

C)a!v. Let us examine

the trae � . (new ~

:

~

C) (P

0

jH

0

)

s

=)

a

�

. Somewhere in s the names

in ~ may be exported. In general we an onstrut a related trae

s

suh that �; ~

:

~

C . (P

0

jH)

s

=)

a

�

, with the property that for any

Q, �; ~

:

~

C . Q

s

=)

a

�

implies � . Q

s

=)

a

�

; s

is obtained from s by

omitting any bounds (

:

C) found on its output ations.

Now we may apply indution to �; ~

:

~

C(P

0

j H

0

).

s

=)

a

�

, sine

�

�

P

0

by Subjet Redution and to �=

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 25

�; ~

:

~

C . (P j ÆJa!hviK)

s

0

=)

a

�

. Again we may now De�nition 5.9 to

obtain the required �; ~

:

~

C . P

s

0

=)

a

�

.

�

Given this tehnial result, we an now prove the Non-Interferene

Theorem.

Theorem (5.3). If �

�

P; Q and �

top

H; K where H, K are �-free

proesses, then:

P '

�

�

Q implies P jH '

�

�

Q jK:

Proof. To establish the result, it is suÆient to show that P '

�

�

P j H .

In fat by Theorem 5.14 it is suÆient to show � . P

s

=)

a

�

implies � .

P jH

s

=)

a

�

, whih is immediate, and � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

;

this follows from the previous Proposition. �

Note that the requirement that P;Q be well-typed proesses at level �

is neessary for this result to be true. For example onsider the proess P

de�ned by h?(x) l?y: 0 in an environment � in whih h; l are high-level and

low-level resoures respetively. Then P '

bot

�

0. However P j H 6'

bot

�

26 Matthew Hennessy and James Riely

a high-level proess reads a value from a low-level hannel

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 27

tiated type system is used to ontrol information ow. The judgements

in their system take system

28 Matthew Hennessy and James Riely

[2℄ D. E. Bell and L. J. LaPadula. Seure omputer system: Uni�ed exposition and

multis interpretation. Tehnial report MTR-2997, MITRE Corporation, 1975.

[3℄ C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control ow analysis for the

�-alulus. In Pro. CONCUR'98, number 1466 in Leture Notes in Computer

Siene, pages 84{98. Springer-Verlag, 1998.

[4℄ C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Stati analysis of proesses

for no read-up and no write-down. In Pro. FOSSACS'99, number 1578 in Leture

Notes in Computer Siene, pages 120{134. Springer-Verlag, 1999.

[5℄ G. Boudol. Asynhrony and the �-alulus. Tehnial Report 1702, INRIA-Sophia

Antipolis, 1992.

[6℄ Ilaria Castellani and Matthew Hennessy. Testing theories for asynhronous lan-

guages. In V Arvind and R Ramanujam, editors, 18th Conferene on Foundations

of Software Tehnology and Theoretial Computer Siene (Chennai, India, De-

ember 17{19, 1998), LNCS 1530. Springer-Verlag, Deember 1998.

[7℄ D. Denning. Certi�ation of programs for seure information ow. Communia-

tions of the ACM, 20:504{513, 1977.

[8℄ Riardo Foardi, Anna Ghelli, and Roberto Gorrieri. Using non interferene for

the analysis of seurity protools. In Proeedings of DIMACS Workshop on Design

and Formal Veri�ation of Seurity Protools, 1997.

[9℄ Riardo Foardi and Roberto Gorrieri. A lassi�ation of seurity properties for

proess algebras. Journal of Computer Seurity, 3(1), 1995.

[10℄ Riardo Foardi and Roberto Gorrieri. The ompositional seurity heker: A

tool for the veri�ation of information ow seurity properties. IEEE Transations

on Software Engineering, 23, 1997.

[11℄ Riardo Foardi and Roberto Gorrieri. Non interferene: Past, present and future.

In Proeedings of DARPA Workshop on Foundations for Seure Mobile Code,

1997.

[12℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A alulus of

mobile agents. In U. Montanari and V. Sassone, editors, CONCUR: Proeedings

of the International Conferene on Conurreny Theory, volume 1119 of Leture

Notes in Computer Siene, pages 406{421, Pisa, August 1996. Springer-Verlag.

[13℄ R. Reitmas G. Andrews. An axiomati approah to information ow in programs.

ACM Transations on Programming Languages and Systems, 2(1):56{76, 1980.

[14℄ J. A. Goguen and J. Meseguer. Seurity

Information Flow vs. Resoure Aess in the Asynhronous Pi-Calulus 29

retial Computer Siene, 114:149{171, 1993.

[20℄ R. De Niola and M. Hennessy. Testing equivalenes for proesses. Theoretial

Computer Siene, 24:83{113, 1984.

[21℄ Benjamin Piere and Davide Sangiorgi. Typing and subtyping for mobile proesses.

Mathematial Strutures in Computer Siene, 6(5):409{454, 1996. Extended ab-

strat in LICS '93.

[22℄ Benjamin C. Piere and David N. Turner. Pit: A programming language based

on the pi-alulus. Tehnial Report CSCI 476, Computer Siene Department,

Indiana University, 1997. To appear in Proof, Language and Interation: Essays in

Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,

MIT Press.

[23℄ James Riely and Matthew Hennessy. Resoure aess ontrol in systems of mobile

agents (extended abstrat). In Proeedings of 3rd International Workshop on

High-Level Conurrent Languages, Nie, Frane, September 1998. Full version

available as Computer Siene Tehnial Report 2/98, University of Sussex, 1997.

Available from http://www.ogs.susx.a.uk/.

[24℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstrat). In Conferene Reord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Priniples of Programming Languages,

pages 93{104, 1999.

[25℄ A.W. Rosoe, J.C.P. Woodok, and L. Wulf. Non-interferene through determin-

ism. In European Symposium on Researh in Computer Seurity, volume 875 of

LNCS, 1994.

[26℄ P.Y.A. Ryan and S.A. Shneider. Proess algebra and non-interferene. In CSFW

12. IEEE, 1997.

[27℄ Geo�rey Smith and Dennis Volpano. Seure information ow in a multi-threaded

imperative language. In Conferene Reord of the ACM Symposium on Priniples

of Programming Languages, San Diego, January 1998.

[28℄ Nobuko Yoshida. Graph types for monadi mobile proesses. In FSTTCS, volume

1180, pages 371{386. Springer-Verlag, 1996.

