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Abstract

Obliq is a lexically-scoped, distributed, object-based programming language. In Obliq, the mi-
gration of an object is proposed as creating a clone of the object at the target site, whereafter
the original object is turned into an alias for the clone. Obliq has only an informal semantics,
so there is no proof that this style of migration is safe, i.e., transparent to object clients. In
previous work, we introduced @jeblik, an abstraction of Obliq, where, by lexical scoping, sites
have been abstracted away. We used @jeblik in order to exhibit how the semantics behind Obliq’s
implementation renders migration unsafe. We also suggested a modified semantics that we con-
jectured instead to be safe. In this paper, we rewrite our modified semantics of @jeblik in terms
of w-calculus, and we use it to formally prove the correctness of object surrogation, the abstraction

of object migration in @jeblik.



1 Introduction

The work presented in this paper is in line with the research activity to use the w-calculus as a



Aliasing Semantics In [NHKER00], we gave several proposals of configuration-style semantics
for @jeblik. One of them fits the Obliq implementation [Car94, Car95], but does not guarantee the
correctness of object surrogation as obThi3980d[4we



Channels: ceC Values
Keys: ke K v ou= oz variable
Names: eEN | (w variant
n o= ¢ | k | (v1..0n) tuple
Auziliary: uwelU Types
Variables: eX T == CT) channel type
r o= n | u | K key type
| [Ty 5l Ty ] variant type
Labels eL | (T1..Tw) tuple type
b0y, 0s,. .. | X type variable
| wX.T recursive type
Processes
P =0 nil process
| cx).P single input
| ©@v output
| PP parallel
|  vn:T)P restriction
| l'cxz).P replicated input
| if [k=Fk1] then Py elif [k=k.] then P; else Ps key testing
| casevof - x1):Pij...;4y- @pm):Pny variant destructor
| let z1..2p)=vin P tuple destructor
| wrong run time error
The locality constraint requires that in single and replicated) inputs and in
variant and tuple) destructors the bound names z, 1, ..., T, must not be
used in free input position within the respective scope P, Py, ..., Py,.

Table 1: The Calculus L7+

reasoning about, concurrent object-oriented languages. In particular, we can easily guarantee the
uniqueness of object identities—a fundamental feature of objects: in object-oriented languages,
the name of an object may be transmitted; the recipient may use that name to access the methods
of the object, but it cannot create a new object with the same name. When representing objects
in the m-calculus, this translates directly into the constraint that the process receiving an object
name may only use it in output actions—a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introduce the calculus Lz, a typed version of polyadic Lw with: i) labelled
values (_v, called variants [San98], with case analysis; ii) tuple values (wv;..v, ), with pattern
matching, iii) constants k, called keys, with equality; iv) a wrong construct to model run-time
typing errors.

We introduce a few syntactic categories: the set X of wvariables includes the set N of names
constants and variables) consisting of the two disjoint sets C of channels and K of keys. The
auxiliary variables in the set U are variables for complex values. L is the set of labels. In addition
to the metavariables mentioned in the grammar, we let s,p,q,r, m,t range over channels, y over
variables, w over values, ) over processes, and 4, j, d, h, m over tuple, variant, or other indices. We
abbreviate £_() and £_ ) as £, as well as g() and ¢ ).P as g and ¢.P, respectively, while ¥ denotes



a sequence vy . . Up,.
Restriction, both inputs, and both destructors are binders for the names z,z1,...,Z,, in the
respective scopes P, P, ..., Py,. We assume the usual definitions of
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The proof of the above result is standard see



Definition 2.8 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S such
that A; P;Q) € S implies:

1. If P 5 P!, then there exists Q' s.t. Q = Q' and A;P;Q') € S.
2. If P (Zﬁﬂ) P', withnNfn Q) =0, then there exists Q' such that Q % Q' and
A,nT); P;Q") €S.
3. If
(i) T is a closed extension of A,
(ii)) TFeCT) and T+ o:T,
(iii) P — P', with fc v)Nfc P | Q) =0,
then there exists (' such that:
(i) either Q ==




(i) T is a closed extension of A,

(ii)



a,b :=0 object
|al(ay..an) method invocation
| alem method update
| a.clone shallow copy
| a.alias(b) object aliasing
| a.surrogate object surrogation
| a.ping object ping
| s,z,y,2 variables
|letz:A=ainb local definition
| fork(a) thread creation
| join(a) thread destruction

0 == [lj=mjljes object record
mj n=g¢ sj:A,a?j:Ej)bj method
A,B :=[1;:B;=Bjljes object record type
| Thr A) thread type

Table 4: Djeblik Syntax and Types

we show that the relation
S = {(ﬁv |R, vr:CT)) pw|rvq) | R)}U =~

is a barbed bisimulation up to =. The requirements on the barbs are easily satisfied. As for the
bisimulation game on silent moves, the only interesting case is when there is a communication

along p, that is, when R ﬂ>R’ . In this case we get, up to structural equivalence, the pair of

processes
({4}, vr:CT)) Qlrr>q))
where Q = R'{W/r}. By Lemma 2.14 we can conclude. O

3 jeblik: A Concurrent Object Calculus

In this section, we present @Qjeblik [NHKER00], a typed abstraction of Obliq designed to study
object migration. @Djeblik-expressions and @jeblik-types are generated by the grammar in Table 4,
where a ranges over (jeblik-terms, 1 over method labels, m over method bodies, s,z,y,z over
variables, O over object records, and A, B over types. The type language extends the one of
the imperative object calculus [AC96] by thread types Thr A). Pairs #;:B; denote sequences
x1;:B1; ..y, :By;. Function types A—B do only occur in object types [lj:gj—)gj]jej, so they are
not first-class types. Yet, we sometimes abbreviate such object types by [1j:4;];es to clarify that
a type is not a thread type. Typed terms are defined by adding type annotations to all binding
occurrences of variables: in let-expressions and in method declarations.

For the sake of simplicity, compared to Obliq, in @jeblik we omit ground values like numbers,
booleans, strings, etc.), data operations, and procedures, we restrict field selection to method
invocation, we restrict multiple cloning to single cloning, we omit flexibility of object attributes,
we replace field aliasing with object aliasing, we omit explicit distribution, and we omit exceptions
and advanced synchronisation, so we get a feasible, but still non-trivial language. As in Obliq,
computation follows the call-by-value evaluation order. In particular, in the following, whenever
we use a term a, we implicitly assume that we have first evaluated a to some actual value, i.e. in
most cases to an object reference.

10



Objects

An object record [l;=m;];cs is a finite collection of updatable named methods 1;=m;, for pairwise
distinct labels ;. In a method ¢ s,Z



Self-Infliction

The current method of a thread is the last method invoked in it that has not yet



Fz)=A T-LeT) C'kaA [,z:AF b:B
T'kaz:A ) I'kletz:A=ainb: B

T-VAR)

F'kaA T-Jom) I'Fa:Thr A)
T'F fork{(a) : Thr A) ) T'F join{a) : A

T-FORK)

VJGJ F,S]'ZA,QNZjigj H bjléj A= [ljzgj_)gj]jEJ
'k [lj:§ Sj:A,i‘j:Bj)bj]jGJ : A

T-OBJ)

ta: [ljigjﬁéj]jet] Fl—gklgk keJ

T-Inv
) I‘I—alk<bk)Bk

I'kFaAd A= [ljléj—)gj]jeJ r, s:A,i:gk F b:ék keJ

T-UprD e
) Ik alp<s s:A,2:Bp)b: A

I'FaA A= [lj:Aj]jGJ

T-PiNG) 't a.ping: A

I'kFaAd A= [lj:A]']jEJ

T-Cro) TF a.clone: A

'k a, b:A A= [lj:Aj]jEJ

T-AL I'F a.alias(b) : A

I'kaA A= [lj:Aj]jEJ

T-Sur) T F a.surrogate : A

Table 5: Typing Rules for @jeblik

semantics of alias nodes. We address the reader to [NHKER00, ERer00] for a full explanation aboutj



let z = [1= “bar”]in
lety =[1=“foo”]in
let x =[1=¢ s,w)s.alias(w) Jinz.1{y);z.1(2z)

after it carried out the invocation z.1{y), that is, when the object referred to by z has turned
itself into an alias for y and then terminated its activity. We depict the situation as follows

where, in general, the node x may itself be referred to by other aliases, while y and z may be
either an alias or an object record. In fact, the alias xMy is stable in the very sense: no re-aliasing
operation on x to another node will ever possibly take place



By calling z.1(z), the aliasing operation z.alias(z) is carried out giving rise to the cyclic alias
chain zMxz. As a consequence, the following external method call z.k will give rise to a diverging
computation.

4.3 On forwarding requests within alias nodes

In this section, we describe the behaviour of single alias nodes in @jeblik by addressing four crucial
questions.

What is the current self of forwarded requests?

Who is in charge of sending the result of a forwarded external request?
When does the forwarding take place?

Which requests are forwarded and which requests fail in an alias node?

-

Our semantics behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, alb. Let ¢ be a third object
invoking a method of a. Then, when serving the external) request, the alias a simply forwards
the request to b, and ¢ is still the current self. Roughly speaking, it is as if ¢ invokes directly a
method of b. The self-inflicted case is trivial because then a = c.

Who? As above, let alllb and ¢ be a third object invoking a method of a. Since alias nodes simply
forward requests unchanged, also the transmission of the result of the request is delegated to b. As
a consequence: should the request in a have required a mutex, then the mutex can already be
released once the request has been forwarded to b.

When? When addressed to stable alias nodes, incoming external requests do not have to wait
until previously forwarded requests there can only be external ones in this case) have successfully
signalled termination from their point of action. However, when addressed to unstable alias nodes,
incoming external requests must wait for the termination of previous external and self-inflicted)
requests.

Which? Protected external requests are supposed to fail only when addressed to non-aliased
nodes, thus only in endpoints of alias chains.

e Ecthod invocations as well as pings and surrogations) are always forwarded by transitivity
to the endpoint of the chain, if it exists).

o Self-inflicted cloning and self-inflicted aliasing are performed at the alias node; external
cloning and external aliasing are forwarded because they can possibly reach another node in
the alias chain where they are self-inflicted and therefore executable.

e Self-inflicted update requests are forwarded. External update requests are forwarded because
they may reach a non-aliased) object that serves them.

5 A translational semantics for @jeblik

In this section we give a translational semantics of @jeblik into LzT according to the informal
semantics given in Sections 3 and 4. In addition to the syntax of Lz we use standard abbreviations
for:

e polyadic input a z ..x,).P ey y)det x;..2,)=yin P where y ¢ fn P). We will also

write C T} ..T),) instead of C (T} ..T, )) denoting the type of a channel carrying a tuple.

e polyadic case destructor £_ 1 ..xy):P def y):let z1..x2,)=yin P, where y ¢ fn P);

15



[aclonel;  (va) ([all [a(y, k) . F(clnp, k') j

[aalias(h) s < (vara,) ([alh, |au(y 5)-(ID152 | g (k) F@li (o, p), b)) f
[alj=s(s, 2015 < (vg) (Tl |aly, K).(wt) (1 t(s, 7, k).[D] | Gupd; (¢, ), k')



to become



[o];

eyt (ﬁ(S,k> | newOq(s,t) | [T 5 s5,@;,mk')-[b;1F )
jet

newOgq (s, t)

newAq( s, Sa )

=8

ef

l/memikeki) (We | OM@(s,me,mi,ke,ki,tN) )
:e Vmemikeki) (We | AM@<Sameami7keaki78a> )

o
o

OMO< S, ﬁ’L, ke; kia,tv>
if [k=k;] then

s 1 k). uk*)(

case [ of cIn_ ) : OMq( s, M, ke, k*, 1) | vs*) (T(s*,k*) | newOo(s*,t) ) ;
ali_ sa,7) : AMg(s,m, ke, k*, 52 ) | T(Sa, k*) ;

upd;







without affecting the state of the manager, so these transitions are completely ignored in Figure 1.

Serving external requests [k=k,






to retrieve the value of a fork’ed term a, but we used it to send the result channel of the join’ing
term, together with its current key—this is precisely represented in the translation of Thr A).
According to the translation of types, we can add type declarations in a straightforward way
to all bindings in the translation of terms, as mentioned, although omitted, in Section 5.
Types witness the clean representation of @jeblik terms as mw-calculus terms.

Theorem 6.1 (Type Soundness) Let a € L, let T' be a type-environment, and let A be a type.
Then Tt a:A if and only if [T],pR [A]),k:KF [a]l for names p and k.

PrOOF. The implication from left to right is proved using induction in the depth of the derivation
of ' a:A with a case analysis of the last rule used. The implication from right to left is proved
by induction in the structure of a. Details can be found in Appendix A.2. O

In addition to the initial correspondence of types in @jeblik and their 7-calculus counterparts,
the preservation of types under reduction in the w-calculus provides us for free with preservation of
Djeblik types, thus witnessing the subject reduction theorem based on the operational



PRrOOF. By inspection of the encoding. If a manager is present, it must have been created at some
point as described in the encoding, because initially, there is none. Upon creation, its name ssome



where the keys mentioned in v of PPg(...) neither match ke nor k.  Notice that
newOgq(s,t) = vk;)freeOg(s, ki, t,0), and analogously for newAg(...).
Observation 4: An



[

-

| [L=¢ s,Z)C[], Ln=mjz |jes

CUckNE  (al(actla)
| Cl].1<=m | al<s 5,2)C[]
| C[].alias(b) | a.alias(C[-])
| C'[].clone
I C[-].surrogate | C[].ping

letz=C[]inb |letz=ainCJ[]
| fork(CT]) | join(C])

Table 9: @Djeblik contexts
adds one unconditional step after reducing a) and that the notion of equivalence takes all @jeblik
contexts into account, Equation 1 can be reduced to the problem of surrogation on variables:
x = x.surrogate 2)

However, there is an inherent problem with Equation 2, which is exhibited by



7.2 On the absence of self-inflicted surrogation

One of the main observations in [NHKER00] was that the safety equation can not hold in full
generality for @jeblik-contexts, in which the operation z.surrogate could occur



[ a.surrogate* ]]]]; = (vq) ( ﬂ[a]]]]; | q(y,i).y(sur*_p,i))
Laping” 15 = (vq) ([all | a(y,i) . 7{png" p,i))
OM( 5, i1, ke, ki, 1) défs(l,k).(uk*)(

if [k=k;] then

case [ of
sur_(r) : OM% (s, i, ke, k*, £ ) | [ s.alias(s.clone) ¥~ ;
png—(r) : OM (s, i, ke, k™, E) | [s1F
sur*_(r) : OM&( s, m, ke, k*, 1) | [ s.alias(s.clone) J*" ;
png” () : OM& (s, 7o, ke, k™, E) | [T

elif [k=k.]




compares the convergence behaviour of a tagged term and its untagged counterpart with respect
to the tagged semantics. By definition, the tagged semantics treats tagged and untagged requests
in exactly the same manner. O

Tagging helps us to detect all “requests arising from the hole”.

Definition 7.4 (External Contexts) Let z be a variable and C[-] an untagged Djeblik context.
Then, C[-] is called external for x.surrogate, if whenever

[ C[x.surrogate*] ]]]Ili =_ E[5(sur* _r, k) | OM}( s, M, ke, ki, 1) ]
it holds that k # k;.

We replay the definition using ping instead of surrogate. By definition of the semantics, an @jeblik
context C[-] is then external for z.surrogate if and only if it is external for x.ping. For convenience,
by abuse, we simply call C[-] to be external for x.

8 On the safety of surrogation

In this section, we prove that that
Clz.ping]l} iff Clz.surrogate]l

under the assumption that C[] will never lead to self-inflicted



Lemma 8.3 proves that the alias manager



PROOF. By Lemma 7.3 our proof obligation is equivalent to:

[Clz.ping*] T} 4, iff [C]



By the tagged counterpart of) Lemma 6.6 it holds that:
Py = vZ) ( My | surO5(sn, an, kn,th, o))

for some zp, and M},. Now, we simulate the previous reduction sequence, which uses sur*-requests,
but now using png*-requests and proceeding up to structural equivalence and barbed equivalence.

Dly(png*-¢,7)] =

Q1,1 —i Q1,2 —i s = Qing —s @1 ~r Q1 = Qo
Q2,1 —i Q2,2 —i s = Q2 —s Qa ~p Q2 = Qan
Qa1 —i Q42 =i ot =i Qdong —s Qa  ~r Q4 = Qa+t1,1
Qat+1,1 =i Qdy12 —i - i Qdyingy, def Qlp
where:
Qh,g déf Phhq[png*/sur*]

The insignificant reduction steps —; exist because of Lemma 8.8. The significant reduction
steps Qn,n, —s Qr are analogous to



Vjed F,Sj:A,i‘jiéj Fa b]’:éj A= [lj:gj—)ﬁj]jej
r l_D [1] S S]'ZA,QNZjiBj)bj]jeJ : A

T-OBJ)

'kpa:A A= [ljigjﬁﬁj]je'] r, SklA,QNZklgk Fa bklﬁk keJ

T-UpPD
) I'tpaly<c Sk:A,i‘k:B



semantics for Djeblik, the question for some formal correspondence result among the semantics by
translation and the direct semantics arises. On the other hand, one may ask to carry out the proofs
on the direct semantics instead of employing some other lower-level formalism. However, we found
it very natural and useful to develop two semantics at different abstraction levels hand-in-hand.
In fact, most of the examples of unsafe surrogation were discovered by means of the m-calculus
semantics, and only then “verified” in the direct semantics. ERoreover, since we have developed
both levels of semantics in lock-step, we have a good basis for formalizing their interrelation.
Finally, in contrast to our abstract configuration-style semantics for closed terms only, the 7-cal-
culus provides indeed a very rich set of approved reasoning tools that make the life of a theorem
prover much easier, as exemplified by Kleist and Sangiorgi [KS98], and also in this paper.

Other strands of future work are twofold. One is to continue to develop and exploit semantics
for the Oblig-style of object migration, and to use our semantics also to prove other equations
on Oblig-programs. For example, also equations like join(fork{a))=a do only hold under certain
conditions inflicted by self-infliction. Another strand is to try to carry over our results to settings
that are not based on the notion of serialization via self-infliction, but rather reentrant mutexes,
as in Java.
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A Proofs

A.1 Proof of Lemma 2.14

PrOOF. We show that the relation
S={(Q{Pla}, v¢:CT)) Q|grp)) : ¢ in Q only in output position}
is a barbed bisimulation up to structural equivalence.

e Let Q{Plq} —>Q'{Plg}. There are two cases.

1. Q@ 5Q’. This case can be easily treated.

2. Otherwise, since p and ¢ are channels and they never appear in testing, this means
that the 7-action is due to a communication along p. ERore precisely, () must contain
an occurrence of ¢ in output subject position and an occurrence of p in input position
which give rise to the communication. Up to structural equivalence, this implies that

vg:CT)) Q|qrp) — — = vg:CT)) Q |qvp).
As desired.

e Let vq:C T)) Q|qv>p) ——R for some R. There are two cases.

1. R= vq:CT)) Q| qgvp) since Q —5@Q'. This case can be easily treated.
2. The 7-action is due to some communication along g between ) and the link g > p. ERore
precisely,



Before we start, let

cln : R X)
ali : (X,R X))
A* X) denote _uPdJ' : (CX,M BJjBJ')/ZK)aR X))
invj (M B, B)))
sur : R X)
png R X)

jEL.n,

with






and in order to type the object manager we must also have K = .J in order to have the same
number of methods in the type and the object manger. The typing of the object manger
also yields that we must have the types T; = C [A],[B; ],R B;),K). We are now



In state OM®, a png request drives the system into state OM. In the case of method invocation
a reduction along t; may occur which allows the evaluation of the method body. At this point a
number of self-inflicted requests may be served external requests are blocked because the external
mutex me is no available). This part of the computation will not change the state. Notice that,
by hypothesis, since we suppose that Z contain an object manager and non an alias manager,
we exclude self-inflicted aliasing operations. When the last self-inflicted request is served, a reply
r*(0, k) will appear unguarded. The confluent reduction along r* will drive the computation to
state OM'. sur requests are treated similarly.

State OM' can only evolve, by reducing along m;, to state (o] Vi O

A.4 Proof of Lemma 8.2

We show that there is a sequence of T-actions such that:

surOg(s,r, k,t,0)=>=
vs*) ((vk;)freeAo(s, ki, s*,0) | newOgq( s*, %) |F(s*,k)).

We prove that ~r., is insensitive to these particular 7-actions. To this end, we supply the two
lemmas A.2 and A.3. We recall that BM[-] denote the call manager protocol as defined in Table 7.

Lemma A.2 Let 0 := me,mi, ke, and v := vy .. vy with v; := (1, k; ) for j € 1.n, and

Cy := BMJ[ vq) 5(cIn_g,k*) | q =, k").35(ali_(x,r*), k")) ]
Cy := BM[ vq) q(s*, k*) | q =, k").3@li_(x,r*), k")) ]
P@) := vik*) (mik|OMo(s, 7, k*,t) | PPo(s,7,0)|C1)
with k* & fn v)
Q@) := wvnk*s*) (mik| OMg(s, 7, k*,t) | newOg(s*,t) |PPo(s,7,7) | C>)
with k* ¢ fn ?)
' v P@),Q(®) for some T.

Then, P(3) ~r,s Q).

Proor. For simplicity, we omit the obligations on types in the coinductive definition of ~r;;.
So, we prove that the relation:

S={ Pw),Q(w)) : W =w; ..wy,, with w; :=(l;,k;), j€l.n} UT

where 7 is the identity relation, is a ~r,s-bisimulation up to =.

The only channel which appear free in subject position in P(w) and Q(w) is s. Since both the
external key ke and the internal key k* are restricted in P(w) and Q{w), an by well-typedness,
the environment can send requests only of the form 5(I, k) with ke # k # k*.

The process P(w) can perform only two kinds of actions. Either i) an input action s(l, k) with
ke # k # k*), or ii) a silent move along s involving the self-inflicted cloning request contained
in C;. In case 1), the pre-processing of the request creates the process me. 5(l, ko) | mik) which
can be added in PPg(s,n,w) obtaining some PP@(S,ﬁ,’U\JT> with w' = @ U (I,k). The process
Q{w) can perform the same action and the derivatives are again related by S. In case ii), the
process @Q(w) can mimic the 7-action by not performing any reduction at all. Up to structural
equivalence, we get into the identity relation.

The process Q(w) can only perform two kinds of actions. Either i) a input action s{l, k) with
ke # k # k*), and we reason as above, or ii) a silent move along the restricted channel ¢ in Cs. In
this case P(w) can perform two silent actions, along s and ¢, getting, up to structural equivalence,
into the identity relation. O

Lemma A.3 Let i := me,mi, ke, and v := vy .. v, with v; := (l;,k;) for j € 1..n, and

38



Cs := [_( i(s%,77), k") ]
Cy == AM[r *( ,k*)]
P{v) = l/nk* W| Mo(s,n, k* t|new0@s t |PP@snv |C’3
with k* ¢ n 7)
Q@) == wvik*s*)(mik| AMo(s, 71, k*, s* ) | newOq(s*,t) | PPo(s,7,7) | Cy )
with k* ¢fn v)

' - P(@),Q(v) for some T.
Then, P(5) ~r.s Q7).
ProoF. Similar to that of Lemma A.2. O

PROOF OF LEMMA 8.2. As said above there is a sequence of m-actions, such that:
surOg( s, r, k, 1,0 )== vs*) ( vk;) freeAo(s, ki, s*,0) | newOq( s*,%) |F(s*,k>).

The above sequence consists of 7 silent steps. These 7-steps are of two kinds: i) confluent
reductions along restricted channels of the form

Clva) a(®) | ¢ ©).P)] —=C[P{"z}]

where ¢ & fn P



where k* ¢ fn 0).
In the fifth 7-step we reduce the self-inflicted aliasing request contained in C'5. So, let us denote
with Cy the process BM[r*(s*,k*)]. It holds that the process

vik*s*) (mik| OMo(s, 7, k*,t) | newOg(s*, ) | PPg(s,7,) | C3)
reduces, up to structural equivalence, to
Vﬁk*s*)(ﬁiﬂ AMq(s,n, k*,s*) | neWO@(s*,f) | PPo(s,n,v) | C’4)

where k* ¢ fn v). By Lemma A.3 the relation ~r,s is insensitive to this reduction.
The sixth and the seventh reductions are of kind a and involve channels 7* and m;, respectively.
Up to structural equivalence we get the desired process

vs*) (vk;)freeAg(s, ki,s*,0) | newOg(s*, ) | F(s*, k).

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased object manager appearing in Lemma 8.2 behaves as a forwarder.
As a first step we recall a well-known property of replicated input.

Lemma A.4 Let C[-] be a w-calculus context where channel ¢ does not appear either in input or
in output object position. Then

ve) (e x).P | Clev] ) =~r ve) (e x).P | CIP{"L}])
PrROOF. By applying Eilner’s replications theorems [ERil93]. O

Proor oF LEMMA 8.3. The obligations on types guarantee that values received along channel
s are of the right type. This allows us to use polyadic input along s. By observing process
vk;) AMq( s, m, ke, ki, s* ) we note that, since k; is restricted and never extruded, the aliased object
manager will never receive self-inflicted requests. By exhibiting the appropriate bisimulation, we
can prove that such a process has the following functional behaviour.

vki) AMg(s, m, ke, ki,s*)) ~r s 1, k).if [k=ke] then m; k). s*(I, k) | mo)
else me. 5(Jfhglikinelky

Since =~ is preserved by parallel composition and restriction, we have that:

vk;) freeAg(s, ki, s*,0))
Xr
vimke) (e | !s I, k).if [k=ke] then m; self-inflicted)Tj55.80Td requests.)Tj42.96020Td By)Tjl.

Me.



I/’IAka/'e) (m_e | 's l,k)lf [k‘:ke] then m; k-) s* <l,k> | m_e)
else me. 3(I, ko) | mik)
| T me (505 ke) | mik;) )

jE€l.n

~r.s by exhibiting the appropriate bisimulation)

| 'se l,k).m; k). s*(I, k) | Te)
| IT me. 5e(ly, kj) | mik;) )

jEl.n

vmse) (Me | s 1,k).me. 5o(I, k) | mik)

~r reductions on m; are confluent)

VMeSe) (m_e | 1s1,k).me.35(1, k)
| Vse I k). s*(I, k) |
| I mese(ly, kj))

JjEL.n

5

e

~r by Lemma A.4)

~r by garbage collection on s)

Vi) (



We recall that ~r,s is ground on channels. This means that we alway suppose to receive fresh
channels, in particular, we never receive channels s and s*.

As regards the left side, the only interesting transition is the input action along s. This action
can be emulated by the



3. If v3) A| R)— vjj) A' | R'), where the r-action is due to a communication along s
between A and R recall that s can only appear in output in R), then we reason
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