
Lo
al �-Cal
ulus at Work:

Mobile Obje
ts as Mobile Pro
esses

1

Massimo Merro

2

COGS, University of Sussex, United Kingdom

Josva Kleist

3

INRIA, Sophia-Antipolis, Fran
e

Uwe Nestmann

EPF, Lausanne, Switzerland

February 7, 2001

1

An extended abstra
t has appeared in Pro
eedings of IFIP TCS 2000, volume 1872 of Le
ture Notes

in Computer S
ien
e. Springer Verlag, August 2000.

2

Partly supported by Marie Curie fellowhip, EU-TMR, No. ERBFMBICT983504.

3

Partly supported by Danish National Resear
h Foundation grant SNF-28808

Abstra
t

Obliq is a lexi
ally-s
oped, distributed, obje
t-based programming language. In Obliq, the mi-

gration of an obje
t is proposed as
reating a
lone of the obje
t at the target site, whereafter

the original obje
t is turned into an alias for the
lone. Obliq has only an informal semanti
s,

so there is no proof that this style of migration is safe, i.e., transparent to obje
t
lients. In

previous work, we introdu
ed �jeblik, an abstra
tion of Obliq, where, by lexi
al s
oping, sites

have been abstra
ted away. We used �jeblik in order to exhibit how the semanti
s behind Obliq's

implementation renders migration unsafe. We also suggested a modi�ed semanti
s that we
on-

je
tured instead to be safe. In this paper, we rewrite our modi�ed semanti
s of �jeblik in terms

of �-
al
ulus, and we use it to formally prove the
orre
tness of obje
t surrogation, the abstra
tion

of obje
t migration in �jeblik.

1 Introdu
tion

The work presented in this paper is in line with the resear
h a
tivity to use the �-
al
ulus as a

Aliasing Semanti
s In [NHKM00℄, we gave several proposals of
on�guration-style semanti
s

for �jeblik. One of them �ts the Obliq implementation [Car94, Car95℄, but does not guarantee the

orre
tness of obje
t surrogation as

obThi398 0d
[4we

Channels:
 2 C Values

Keys: k 2 K v ::= x variable

Names: 2 N j ` v variant

n ::=
 j k j h v

1

. . v

n

i tuple

Auxiliary: u 2 U Types

Variables: 2 X T ::= C(T)
hannel type

x ::= n j u j K key type

j [`

1

:T

1

; : : : ; `

m

:T

m

℄ variant type

Labels 2 L j hT

1

. .T

m

i tuple type

`; `

1

; `

2

; : : : j X type variable

j �X .T re
ursive type

Pro
esses

P ::= 0 nil pro
ess

j
(x).P single input

j
v output

j P

1

j P

2

parallel

j (�n:T)P restri
tion

j !
(x).P repli
ated input

j if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

key testing

j
ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

variant destru
tor

j let (x

1

. .x

m

) = v in P tuple destru
tor

j wrong run time error

The lo
ality
onstraint requires that in (single and repli
ated) inputs and in

(variant and tuple) destru
tors the bound names x; x

1

; : : : ; x

m

must not be

used in free input position within the respe
tive s
ope P; P

1

; : : : ; P

m

.

Table 1: The Cal
ulus L�

+

reasoning about,
on
urrent obje
t-oriented languages. In parti
ular, we
an easily guarantee the

uniqueness of obje
t identities|a fundamental feature of obje
ts: in obje
t-oriented languages,

the name of an obje
t may be transmitted; the re
ipient may use that name to a

ess the methods

of the obje
t, but it
annot
reate a new obje
t with the same name. When representing obje
ts

in the �-
al
ulus, this translates dire
tly into the
onstraint that the pro
ess re
eiving an obje
t

name may only use it in output a
tions|a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introdu
e the
al
ulus L�

+

, a typed version of polyadi
 L� with: (i) labelled

values ` v,
alled variants [San98℄, with
ase analysis; (ii) tuple values h v

1

. . v

n

i, with pattern

mat
hing, (iii)
onstants k,
alled keys, with equality; (iv) a wrong
onstru
t to model run-time

typing errors.

We introdu
e a few synta
ti

ategories: the set X of variables in
ludes the set N of names

(
onstants and variables)
onsisting of the two disjoint sets C of
hannels and K of keys. The

auxiliary variables in the set U are variables for
omplex values. L is the set of labels. In addition

to the metavariables mentioned in the grammar, we let s; p; q; r;m; t range over
hannels, y over

variables, w over values, Q over pro
esses, and i; j; d; h;m over tuple, variant, or other indi
es. We

abbreviate ` hi and ` () as `, as well as qhi and q().P as q and q.P , respe
tively, while ev denotes

3

a sequen
e v

1

. . v

m

.

Restri
tion, both inputs, and both destru
tors are binders for the names x; x

1

; : : : ; x

m

in the

respe
tive s
opes P; P

1

; : : : ; P

m

. We assume the usual de�nitions of

(Inp)

�

(x).P

v

���! Pf

v

=

x

g

(Rep)

�

!
(x).P

v

���! Pf

v

=

x

g j !
(x).P

(Out)

�

v

v

���! 0

(Open)

P

(�eq:

e

T)
v

��������! P

0

n2 n(v)nfeq;
g

(�n:T)P

(�n:T ;eq:

e

T)
v

�����������! P

0

(Com)

P

1

(�eq:

e

T)
v

��������! P

0

1

P

2

v

���! P

0

2

eq \ fn(P

2

) = ;

P

1

j P

2

�

��! (�eq:

e

T) (P

0

1

j P

0

2

)

(Par)

P

1

�

��! P

0

1

bn(�) \ fn(P

2

) = ;

P

1

j P

2

�

��! P

0

1

j P

2

(Res)

P

�

��! P

0

n 62 n(�)

(�n:T)P

�

��! (�n:T)P

0

(Test-1)

P

1

�

��! P

0

1

k

1

= k

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

1

(Test-2)

P

2

�

��! P

0

2

k

1

6= k = k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

2

(Test-3)

P

3

�

��! P

0

3

k

1

6= k 6= k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

3

(Case)

P

j

f

v

=

x

j

g

�

��! Q j 2 1 . .m

ase `

j

v of `

1

(x

1

):

The proof of the above result is standard (see

De�nition 2.9 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S su
h

that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T)
v

��������! P

0

, with en \ fn(Q) = ;, then there exists Q

0

su
h that Q

(�en:

e

T)
v

========) Q

0

and

((�; en:

e

T);P

0

;Q

0

) 2 S.

3. If

(i) � is a
losed extension of �,

(ii) � `
:C(T) and � ` v:T ,

(iii) P

v

���! P

0

, with f
(v) \ f
(P j Q) = ;,

then there exists Q

0

su
h that:

(i) either Q

v

===

(i) � is a
losed extension of �,

(ii)

a; b ::= O obje
t

j a.lh a

1

. . a

n

i method invo
ation

j a.l(m method update

j a.
lone shallow
opy

j a.aliashbi obje
t aliasing

j a.surrogate obje
t surrogation

j a.ping obje
t ping

j s; x; y; z variables

j letx:A=a in b lo
al de�nition

j forkhai thread
reation

j joinhai thread destru
tion

O ::= [l

j

=m

j

℄

j2J

obje
t re
ord

m

j

::= &(s

j

:A; ~x

j

:

e

B

j

)b

j

method

A;B ::= [l

j

:

e

B

j

!

b

B

j

℄

j2J

obje
t re
ord type

j Thr(A) thread type

Table 4: �jeblik Syntax and Types

we show that the relation

S = f

�

pv j R ; (�r:C(T)) (pw j r . q) j R

�

g [

_

�

=

is a barbed bisimulation up to �. The requirements on the barbs are easily satis�ed. As for the

bisimulation game on silent moves, the only interesting
ase is when there is a
ommuni
ation

along p, that is, when R

p(x)

����!R

0

. In this
ase we get, up to stru
tural equivalen
e, the pair of

pro
esses

�

Qf

q

=rg ; (�r:C(T)) (Q j r . q)

�

where Q = R

0

f

w

=xg. By Lemma 2.14 we
an
on
lude.

2

3 �jeblik: A Con
urrent Obje
t Cal
ulus

In this se
tion, we present �jeblik [NHKM00℄, a typed abstra
tion of Obliq designed to study

obje
t migration. �jeblik-expressions and �jeblik-types are generated by the grammar in Table 4,

where a ranges over �jeblik-terms, l over method labels, m over method bodies, s; x; y; z over

variables, O over obje
t re
ords, and A;B over types. The type language extends the one of

the imperative obje
t
al
ulus [AC96℄ by thread types Thr(A). Pairs ~x

j

:

e

B

j

denote sequen
es

x

1

j

:B

1

j

. .x

n

j

:B

n

j

. Fun
tion types A!B do only o

ur in obje
t types [l

j

:

e

B

j

!

b

B

j

℄

j2J

, so they are

not �rst-
lass types. Yet, we sometimes abbreviate su
h obje
t types by [l

j

:A

j

℄

j2J

to
larify that

a type is not a thread type. Typed terms are de�ned by adding type annotations to all binding

o

urren
es of variables: in let-expressions and in method de
larations.

For the sake of simpli
ity,
ompared to Obliq, in �jeblik we omit ground values (like numbers,

booleans, strings, et
.), data operations, and pro
edures, we restri
t �eld sele
tion to method

invo
ation, we restri
t multiple
loning to single
loning, we omit
exibility of obje
t attributes,

we repla
e �eld aliasing with obje
t aliasing, we omit expli
it distribution, and we omit ex
eptions

and advan
ed syn
hronisation, so we get a feasible, but still non-trivial language. As in Obliq,

omputation follows the
all-by-value evaluation order. In parti
ular, in the following, whenever

we use a term a, we impli
itly assume that we have �rst evaluated a to some a
tual value, i.e. in

most
ases to an obje
t referen
e.

10

Obje
ts

An obje
t re
ord [l

j

=m

j

℄

j2J

is a �nite
olle
tion of updatable named methods l

j

=m

j

, for pairwise

distin
t labels l

j

. In a method &(s; ~x

Self-In
i
tion

The
urrent method of a thread is the last method invoked in it that has not yet

(T-Var)

�(x) = A

� ` x:A

(T-Let)

� ` a:A �; x:A ` b:B

� ` letx:A=a in b : B

(T-Fork)

� ` a:A

� ` forkhai : Thr(A)

(T-Join)

� ` a : Thr(A)

� ` joinhai : A

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

` b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Inv)

� ` a : [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

e

b

k

:

e

B

k

k2J

� ` a.l

k

h

e

b

k

i :

b

B

k

(T-Upd)

� ` a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s:A; ~x:

e

B

k

` b:

b

B

k

k2J

� ` a.l

k

(&(s:A; ~x:

e

B

k

)b : A

(T-Ping)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.ping : A

(T-Clo)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.
lone : A

(T-Ali)

� ` a; b:A A = [l

j

:A

j

℄

j2J

� ` a.aliashbi : A

(T-Sur)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.surrogate : A

Table 5: Typing Rules for �jeblik

semanti
s of alias nodes. We address the reader to [NHKM00, Mer00℄ for a full explanation aboutj

let z=[l=\bar" ℄ in

let y= [l=\foo" ℄ in

letx= [l=&(s; w)s.aliashwi ℄ inx.lh y i;x.lh z i

after it
arried out the invo
ation x.lh y i, that is, when the obje
t referred to by x has turned

itself into an alias for y and then terminated its a
tivity. We depi
t the situation as follows

//
�

+3
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

where, in general, the node x may itself be referred to by other aliases, while y and z may be

either an alias or an obje
t re
ord. In fa
t, the alias x�y is stable in the very sense: no re-aliasing

operation on x to another node will ever possibly take pla
e

By
alling x.lhxi, the aliasing operation x.aliashxi is
arried out giving rise to the
y
li
 alias

hain x�x. As a
onsequen
e, the following external method
all x.k will give rise to a diverging

omputation.

4.3 On forwarding requests within alias nodes

In this se
tion, we des
ribe the behaviour of single alias nodes in �jeblik by addressing four
ru
ial

questions.

1. What is the
urrent self of forwarded requests?

2. Who is in
harge of sending the result of a forwarded external request?

3. When does the forwarding take pla
e?

4. Whi
h requests are forwarded and whi
h requests fail in an alias node?

Our semanti
s behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, a�b. Let
 be a third obje
t

invoking a method of a. Then, when serving the (external) request, the alias a simply forwards

the request to b, and
 is still the
urrent self. Roughly speaking, it is as if
 invokes dire
tly a

method of b. The self-in
i
ted
ase is trivial be
ause then a =
.

Who? As above, let a�b and
 be a third obje
t invoking a method of a. Sin
e alias nodes simply

forward requests un
hanged, also the transmission of the result of the request is delegated to b. As

a
onsequen
e: should the request in a have required a mutex, then the mutex
an already be

released on
e the request has been forwarded to b.

When? When addressed to stable alias nodes, in
oming external requests do not have to wait

until previously forwarded requests (there
an only be external ones in this
ase) have su

essfully

signalled termination from their point of a
tion. However, when addressed to unstable alias nodes,

in
oming external requests must wait for the termination of previous (external and self-in
i
ted)

requests.

Whi
h? Prote
ted external requests are supposed to fail only when addressed to non-aliased

nodes, thus only in endpoints of alias
hains.

� Method invo
ations (as well as pings and surrogations) are always forwarded (by transitivity

to the endpoint of the
hain, if it exists).

� Self-in
i
ted
loning and self-in
i
ted aliasing are performed at the alias node; external

loning and external aliasing are forwarded be
ause they
an possibly rea
h another node in

the alias
hain where they are self-in
i
ted and therefore exe
utable.

� Self-in
i
ted update requests are forwarded. External update requests are forwarded be
ause

they may rea
h a (non-aliased) obje
t that serves them.

5 A translational semanti
s for �jeblik

In this se
tion we give a translational semanti
s of �jeblik into L�

+

a

ording to the informal

semanti
s given in Se
tions 3 and 4. In addition to the syntax of L�

+

we use standard abbreviations

for:

� polyadi
 input a(x

1

. .x

n

).P

def

= a(y).let (x

1

. .x

n

)= y inP where y 62 fn(P). We will also

write C(T

1

. .T

n

) instead of C(hT

1

. .T

n

i) denoting the type of a
hannel
arrying a tuple.

� polyadi

ase destru
tor ` (x

1

. .x

n

):P

def

= ` (y):let (x

1

. .x

n

)= y inP , where y 62 fn(P);

15

[[a.
lone ℄℄

k

p

def

= (�q)

�

[[a ℄℄

k

q

�

�

q(y; k

0

) . yh
ln p; k

0

i

�

[[a.aliashbi ℄℄

k

p

def

= (�q

x

q

y

)

�

[[a ℄℄

k

q

y

�

�

q

y

(y; k

y

).([[b ℄℄

k

y

q

x

j q

x

(x; k

x

) . yhali hx; pi; k

x

i)

�

[[a.l

j

(&(s; ~x)b ℄℄

k

p

def

= (�q)

�

[[a ℄℄

k

q

�

�

q(y; k

0

).(�t)

�

! t(s; ex; r; k).[[b ℄℄

k

r

j yhupd

j

ht; pi; k

0

i

� q

to be
ome

[[O ℄℄

k

p

def

= (�s

e

t)

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Q

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[b

j

℄℄

k

0

r

�

newO

O

h s;

e

t i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i

�

newA

O

h s; s

a

i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

AM

O

h s;m

e

;m

i

; k

e

; k

i

; s

a

i

�

OM

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of
ln (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j (�s

�

)

�

rhs

�

; k

�

i j newO

O

h s

�

;

e

t i

�

;

ali (s

a

; r) :AM

O

h s; em; k

e

; k

�

; s

a

i j rhs

a

; k

�

i ;

upd

j

without a�e
ting the state of the manager, so these transitions are
ompletely ignored in Figure 1.

Serving external requests [k=k

e

to retrieve the value of a fork'ed term a, but we used it to send the result
hannel of the join'ing

term, together with its
urrent key|this is pre
isely represented in the translation of Thr(A).

A

ording to the translation of types, we
an add type de
larations in a straightforward way

to all bindings in the translation of terms, as mentioned, although omitted, in Se
tion 5.

Types witness the
lean representation of �jeblik terms as �-
al
ulus terms.

Theorem 6.1 (Type Soundness) Let a 2 L, let � be a type-environment, and let A be a type.

Then � ` a:A if and only if [[� ℄℄ ; p:R([[A ℄℄) ; k:K ` [[a ℄℄

k

p

for names p and k.

Proof. The impli
ation from left to right is proved using indu
tion in the depth of the derivation

of � ` a:A with a
ase analysis of the last rule used. The impli
ation from right to left is proved

by indu
tion in the stru
ture of a. Details
an be found in Appendix A.2.

2

In addition to the initial
orresponden
e of types in �jeblik and their �-
al
ulus
ounterparts,

the preservation of types under redu
tion in the �-
al
ulus provides us for free with preservation of

�jeblik types, thus witnessing the subje
t redu
tion theorem based on the operational

Proof. By inspe
tion of the en
oding. If a manager is present, it must have been
reated at some

point as des
ribed in the en
oding, be
ause initially, there is none. Upon
reation, its name ssome

where the keys mentioned in ev of PP

O

h : : : i neither mat
h k

e

nor k

i

. Noti
e that

newO

O

h s;

e

t i � (�k

i

) freeO

O

h s; k

i

;

e

t; ; i, and analogously for newA

O

h : : : i.

Observation 4: An

C[�℄ ::= [�℄ j [l

k

=&(s; ex)C[�℄ ; l

j 6=k

=m

j 6=k

℄

j2J

j C[�℄.lh ~a i j a.lh ~a; C[�℄; ~a i

j C[�℄.l(m j a.l(&(s; ex)C[�℄

j C[�℄.aliashbi j a.aliashC[�℄i

j C[�℄.
lone

j C[�℄.surrogate j C[�℄.ping

j letx=C[�℄ in b j letx=a inC[�℄

j forkhC[�℄i j joinhC[�℄i

Table 9: �jeblik
ontexts

adds one un
onditional step after redu
ing a) and that the notion of equivalen
e takes all �jeblik

ontexts into a

ount, Equation 1
an be redu
ed to the problem of surrogation on variables:

x

.

= x.surrogate (2)

However, there is an inherent problem with Equation 2, whi
h is exhibited by

7.2 On the absen
e of self-in
i
ted surrogation

One of the main observations in [NHKM00℄ was that the safety equation
an not hold in full

generality for �jeblik-
ontexts, in whi
h the operation x.surrogate
ould o

ur

[[[a.surrogate

?

℄℄℄

k

p

def

= (�q)

�

[[[a ℄℄℄

k

q

j q(y; i) . yhsur

?

p; ii

�

[[[a.ping

?

℄℄℄

k

p

def

= (�q)

�

[[[a ℄℄℄

k

q

j q(y; i) . yhpng

?

p; ii

�

OM

?

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of : : : : : : :

sur (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s.aliashs.
lonei ℄℄℄

k

�

r

;

png (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s ℄℄℄

k

�

r

;

sur

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s.aliashs.
lonei ℄℄℄

k

�

r

;

png

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s ℄℄℄

k

�

r

elif [k=k

e

℄ [

ompares the
onvergen
e behaviour of a tagged term and its untagged
ounterpart with respe
t

to the tagged semanti
s. By de�nition, the tagged semanti
s treats tagged and untagged requests

in exa
tly the same manner.

2

Tagging helps us to dete
t all \requests arising from the hole".

De�nition 7.4 (External Contexts) Let x be a variable and C[�℄ an untagged �jeblik
ontext.

Then, C[�℄ is
alled external for x.surrogate, if whenever

[[[C[x.surrogate

?

℄ ℄℄℄

k

p

=)

�

E[shsur

?

r; ki j OM

?

O

h s; em; k

e

; k

i

;

e

t i ℄

it holds that k 6= k

i

.

We replay the de�nition using ping instead of surrogate. By de�nition of the semanti
s, an �jeblik

ontext C[�℄ is then external for x.surrogate if and only if it is external for x.ping. For
onvenien
e,

by abuse, we simply
all C[�℄ to be external for x.

8 On the safety of surrogation

In this se
tion, we prove that that

C[x.ping℄+ i� C[x.surrogate℄+

under the assumption that C[�℄ will never lead to self-in
i
ted

Lemma 8.3 proves that the alias manager

Proof. By Lemma 7.3 our proof obligation is equivalent to:

[[[C[x.ping

?

℄ ℄℄℄

k

p

+

p

i� [[[C[

By (the tagged
ounterpart of) Lemma 6.6 it holds that:

P

h

� (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; k

h

;

e

t

h

; ev

h

i

�

for some ez

h

and M

h

. Now, we simulate the previous redu
tion sequen
e, whi
h uses sur

?

-requests,

but now using png

?

-requests and pro
eeding up to stru
tural equivalen
e and barbed equivalen
e.

D[yhpng

?

q; ji℄ =

Q

1;1

�!

i

Q

1;2

�!

i

� � � �!

i

Q

1;n

1

�!

s

Q

1

'

�

b

Q

1

� Q

2;1

Q

2;1

�!

i

Q

2;2

�!

i

� � � �!

i

Q

2;n

2

�!

s

Q

2

'

�

b

Q

2

� Q

3;1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q

d;1

�!

i

Q

d;2

�!

i

� � � �!

i

Q

d;n

d

�!

s

Q

d

'

�

b

Q

d

� Q

d+1;1

Q

d+1;1

�!

i

Q

d+1;2

�!

i

� � � �!

i

Q

d+1;n

d+1

def

= Q#

p

where:

Q

h;g

def

= P

h;g

[

png

?

=

sur

?

℄

The insigni�
ant redu
tion steps �!

i

exist be
ause of Lemma 8.8. The signi�
ant redu
tion

steps Q

h;n

h

�!

s

Q

h

are analogous to

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

`

A

b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

D

[l

j

: &(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Upd)

� `

D

a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s

k

:A; ~x

k

:

e

B

k

`

A

b

k

:

b

B

k

k2J

� `

D

a.l

k

(&(s

k

:A; ~x

k

:

e

B

semanti
s for �jeblik, the question for some formal
orresponden
e result among the semanti
s by

translation and the dire
t semanti
s arises. On the other hand, one may ask to
arry out the proofs

on the dire
t semanti
s instead of employing some other lower-level formalism. However, we found

it very natural and useful to develop two semanti
s at di�erent abstra
tion levels hand-in-hand.

In fa
t, most of the examples of unsafe surrogation were dis
overed by means of the �-
al
ulus

semanti
s, and only then \veri�ed" in the dire
t semanti
s. Moreover, sin
e we have developed

both levels of semanti
s in lo
k-step, we have a good basis for formalizing their interrelation.

Finally, in
ontrast to our abstra
t
on�guration-style semanti
s for
losed terms only, the �-
al-

ulus provides indeed a very ri
h set of approved reasoning tools that make the life of a theorem

prover mu
h easier, as exempli�ed by Kleist and Sangiorgi [KS98℄, and also in this paper.

Other strands of future work are twofold. One is to
ontinue to develop and exploit semanti
s

for the Obliq-style of obje
t migration, and to use our semanti
s also to prove other equations

on Obliq-programs. For example, also equations like joinhforkhaii=a do only hold under
ertain

onditions in
i
ted by self-in
i
tion. Another strand is to try to
arry over our results to settings

that are not based on the notion of serialization via self-in
i
tion, but rather reentrant mutexes,

as in Java.

A
knowledgements

We thank Lu
a Cardelli for several useful dis
ussions on Obliq. We also thank Giuseppe Castagna,

Ro

o De Ni
ola, Joa
him Parrow, and Davide Sangiorgi for
omments on an early draft.

33

A Proofs

A.1 Proof of Lemma 2.14

Proof. We show that the relation

S = f

�

Qf

p

=qg ; (�q:C(T)) (Q j q . p)

�

: q in Q only in output positiong

is a barbed bisimulation up to stru
tural equivalen
e.

� Let Qf

p

=qg

�

��!Q

0

f

p

=qg. There are two
ases.

1. Q

�

��!Q

0

. This
ase
an be easily treated.

2. Otherwise, sin
e p and q are
hannels and they never appear in testing, this means

that the � -a
tion is due to a
ommuni
ation along p. More pre
isely, Q must
ontain

an o

urren
e of q in output subje
t position and an o

urren
e of p in input position

whi
h give rise to the
ommuni
ation. Up to stru
tural equivalen
e, this implies that

(�q:C(T)) (Q j q . p)

�

��!

�

��! � (�q:C(T)) (Q

0

j q . p).

As desired.

� Let (�q:C(T)) (Q j q . p)

�

��!R for some R. There are two
ases.

1. R = (�q:C(T)) (Q

0

j q . p) sin
e Q

�

��!Q

0

. This
ase
an be easily treated.

2. The � -a
tion is due to some
ommuni
ation along q between Q and the link q . p. More

pre
isely,

Before we start, let

A

�

(X) denote

2

6

6

6

6

6

6

4

ln : R(X)

ali : hX;R(X) i

upd

j

: hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

7

7

5

j21..n;

with

and in order to type the obje
t manager we must also have K = J in order to have the same

number of methods in the type and the obje
t manger. The typing of the obje
t manger

also yields that we must have the types T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K). We are now

In state OM

s

, a png request drives the system into state OM

i

. In the
ase of method invo
ation

a redu
tion along t

j

may o

ur whi
h allows the evaluation of the method body. At this point a

number of self-in
i
ted requests may be served (external requests are blo
ked be
ause the external

mutex m

e

is no available). This part of the
omputation will not
hange the state. Noti
e that,

by hypothesis, sin
e we suppose that Z
ontain an obje
t manager and non an alias manager,

we ex
lude self-in
i
ted aliasing operations. When the last self-in
i
ted request is served, a reply

r

�

h o; k i will appear unguarded. The
on
uent redu
tion along r

�

will drive the
omputation to

state OM

i

. sur requests are treated similarly.

State OM

i

an only evolve, by redu
ing along m

i

, to state OM

f

.

2

A.4 Proof of Lemma 8.2

We show that there is a sequen
e of � -a
tions su
h that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

We prove that �

�;s

is insensitive to these parti
ular � -a
tions. To this end, we supply the two

lemmas A.2 and A.3. We re
all that CM[�℄ denote the
all manager proto
ol as de�ned in Table 7.

Lemma A.2 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1.n, and

C

1

:= CM[(�q) (sh
ln q; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

C

2

:= CM[(�q) (qhs

�

; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

P hevi := (�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

with k

�

62 fn(ev)

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. For simpli
ity, we omit the obligations on types in the
oindu
tive de�nition of �

�;s

.

So, we prove that the relation:

S = f(P h ewi; Qh ewi) : ew = w

1

. .w

m

with w

j

:= h l

j

; k

j

i; j 2 1. .ng [I

where I is the identity relation, is a �

�;s

-bisimulation up to �.

The only
hannel whi
h appear free in subje
t position in P h ewi and Qh ewi is s. Sin
e both the

external key k

e

and the internal key k

�

are restri
ted in P h ewi and Qh ewi, an by well-typedness,

the environment
an send requests only of the form shl; ki with k

e

6= k 6= k

�

.

The pro
ess P h ewi
an perform only two kinds of a
tions. Either (i) an input a
tion shl; ki (with

k

e

6= k 6= k

�

), or (ii) a silent move along s involving the self-in
i
ted
loning request
ontained

in C

1

. In
ase (i), the pre-pro
essing of the request
reates the pro
ess m

e

.(shl; k

e

i j m

i

k) whi
h

an be added in PP

O

h s; en; ew i obtaining some PP

O

h s; en;

f

w

0

i with

f

w

0

= ew [hl; ki. The pro
ess

Qh ewi
an perform the same a
tion and the derivatives are again related by S. In
ase (ii), the

pro
ess Qh ewi
an mimi
 the � -a
tion by not performing any redu
tion at all. Up to stru
tural

equivalen
e, we get into the identity relation.

The pro
ess Qh ewi
an only perform two kinds of a
tions. Either (i) a input a
tion shl; ki (with

k

e

6= k 6= k

�

), and we reason as above, or (ii) a silent move along the restri
ted
hannel q in C

2

. In

this
ase P h ewi
an perform two silent a
tions, along s and q, getting, up to stru
tural equivalen
e,

into the identity relation.

2

Lemma A.3 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1. .n, and

38

C

3

:= CM[shali hs

�

; r

�

i; k

�

i ℄

C

4

:= CM[r

�

hs

�

; k

�

i ℄

P hevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

with k

�

62 fn(ev).

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. Similar to that of Lemma A.2.

2

Proof of Lemma 8.2. As said above there is a sequen
e of � -a
tions, su
h that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

The above sequen
e
onsists of 7 silent steps. These � -steps are of two kinds: (i)
on
uent

redu
tions along restri
ted
hannels of the form

C[(�q) (qhevi j q(ex).P)℄

�

��!

�

C[Pf

ev

=

ex

g℄

where q 62 fn(P

where k

�

62 fn(ev).

In the �fth � -step we redu
e the self-in
i
ted aliasing request
ontained in C

3

. So, let us denote

with C

4

the pro
ess CM[r

�

hs

�

; k

�

i ℄. It holds that the pro
ess

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

redu
es, up to stru
tural equivalen
e, to

(�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

where k

�

62 fn(ev). By Lemma A.3 the relation �

�;s

is insensitive to this redu
tion.

The sixth and the seventh redu
tions are of kind � and involve
hannels r

�

andm

i

, respe
tively.

Up to stru
tural equivalen
e we get the desired pro
ess

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

2

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased obje
t manager appearing in Lemma 8.2 behaves as a forwarder.

As a �rst step we re
all a well-known property of repli
ated input.

Lemma A.4 Let C[�℄ be a �-
al
ulus
ontext where
hannel
 does not appear either in input or

in output obje
t position. Then

(�
)

�

!
(x).P

�

�

C[
v℄

�

�

�

(�
)

�

!
(x).P

�

�

C[Pf

v

=

x

g℄

�

Proof. By applying Milner's repli
ations theorems [Mil93℄.

2

Proof of Lemma 8.3. The obligations on types guarantee that values re
eived along
hannel

s are of the right type. This allows us to use polyadi
 input along s. By observing pro
ess

(�k

i

)AM

O

h s; em; k

e

; k

i

; s

�

i we note that, sin
e k

i

is restri
ted and never extruded, the aliased obje
t

manager will never re
eive self-in
i
ted requests. By exhibiting the appropriate bisimulation, we

an prove that su
h a pro
ess has the following fun
tional behaviour.

(�k

i

) (AM

O

h s; em; k

e

; k

i

; s

�

i) �

�

! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

Sin
e �

�

is preserved by parallel
omposition and restri
tion, we have that:

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i)

�

�

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(self-in
i
ted)Tj
55.8 0 Td
(requests.)Tj
42.9602 0 Td
(By)Tj
15.8398 0 Td
(exhibiting)Tj
46.9194j
/R223 0.12 Tf
5.51(paralle8-g)T1
/H 1
/BPC 1
ID �
EI Q
q
10 0 0 10 0 0
m BT
/R223 0.12 Tf
1 0 0 -1 394.56 300.22 Tm
(s)T6(h)T2 0.12 Tf
8.68008 -2.88008 Td
(�)Tj47R380 0.12 Tf
4.68008 2.88008 Td
(h)TTj
/R23 0.12 Tf
3.83984 0 Td
[(l)-1998.7(;)-13998.6(k)℄TJ
/R380 0.12 Tf
13.1996 0 Td
(i)Tj
6.6 0 Td
(j)Tj
ET
Q
q 181 0.12 Tf
0 -4.8 4438.68 3180.88
m
BI04
/R17ue
/W 1
/H 1
/BPC 1
ID �
EI Q
q
10 0 0 10 0 0
m BT
/R223 0.12 Tf
1 0 0 -1 212.04 233.5 Tm
(m)TI04.a

e

)

else m

e

.(

hl; k

e

)

i

kself-in
i
ted)

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

�

�;s

(by exhibiting the appropriate bisimulation)

(� ems

e

)

�

m

e

j ! s(l; k).m

e

.(s

e

hl; ki j m

i

k)

j ! s

e

(l; k).m

i

(k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

e

hl

j

; k

j

i j m

i

k

j

)

�

�

�

(redu
tions on m

i

are
on
uent)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.s

e

hl; ki

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.s

e

hl

j

; k

j

i

�

�

�

(by Lemma A.4)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.

�

s

�

hl; ki j m

e

�

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

�

hl

j

; k

j

i j m

e

)

�

�

�

(by garbage
olle
tion on s

e

)

(�m

e

)

�

We re
all that �

�;s

is ground on
hannels. This means that we alway suppose to re
eive fresh

hannels, in parti
ular, we never re
eive
hannels s and s

�

.

As regards the left side, the only interesting transition is the input a
tion along s. This a
tion

an be emulated by the

3. If (�ez) (A j R)

�

��!(�ey) (A

0

j R

0

), where the � -a
tion is due to a
ommuni
ation along s

between A and R (re
all that s
an only appear in output in R), then we reason

Referen
es

[AC96℄ M. Abadi and L. Cardelli. A Theory of Obje
ts. Monographs in Computer S
ien
e. Springer, 1996.

[ACS98℄ R. M. Amadio, I. Castellani and D. Sangiorgi. On Bisimulations for the Asyn
hronous �-Cal
ulus.

Theoreti
al Computer S
ien
e, 195(2):291{324, 1998. An extended abstra
t appeared in Pro
eedings

of CONCUR '96, LNCS 1119: 147{162.

[Bou92℄ G. Boudol. Asyn
hrony and the �-
al
ulus (Note). Rapport de Re
her
he 1702, INRIA Sophia-

Antipolis, May 1992.

[Car94℄ L. Cardelli. obliq-std.exe |Binaries for Windows NT. http://www.lu
a.demon.
o.uk/Obliq/Obliq.

html, 1994.

[Car95℄ L. Cardelli. A Language with Distributed S
ope. Computing Systems, 8(1):27{59, 1995. Short version

in Pro
eedings of POPL '95. A preliminary version appeared as Report 122, Digital Systems Resear
h,

June 1994.

[DF96℄ P. Di Blasio and K. Fisher. A Con
urrent Obje
t Cal
ulus. In U. Montanari and V. Sassone, eds,

Pro
eedings of CONCUR '96, volume 1119 of LNCS, pages 655{670. Springer, 1996. An extended

version appeared as Stanford University Te
hni
al Note STAN-CS-TN-96-36, 1996.

[FG96℄ C. Fournet and G. Gonthier. The Re
exive Chemi
al Abstra
t Ma
hine and the Join-Cal
ulus. In

Pro
eedings of POPL '96, pages 372{385. ACM, Jan. 1996.

[GH98℄ A. D. Gordon and P. D. Hankin. A Con
urrent Obje
t Cal
ulus: Redu
tion and Typing. In U. Nestmann

and B. C. Pier
e, eds, Pro
eedings of HLCL '98, volume 16.3 of ENTCS. Elsevier S
ien
e Publishers,

1998.

[GHL97℄ A. D. Gordon, P. D. Hankin and S. B. Lassen. Compilation and Equivalen
e of Imperative Obje
ts. In

S. Ramesh and G. Sivakumar, eds, Pro
eedings of FSTTCS '97, volume 1346 of LNCS, pages 74{87.

Springer, De
. 1997. Full version available as Te
hni
al Report 429, University of Cambridge Computer

Laboratory, June 1997.

[HK96℄ H. H�uttel and J. Kleist. Obje
ts as Mobile Pro
esses. Resear
h Series RS-96-38, BRICS, O
t. 1996.

Presented at MFPS '96.

[HKMN99℄ H. H�uttel, J. Kleist, M. Merro and U. Nestmann. Migration = Cloning ; Aliasing (Preliminary Ver-

sion). In Informal Pro
eedings of the Sixth International Workshop on Foundations of Obje
t-Oriented

Languages (FOOL 6, San Antonio, Texas, USA). Sponsored by ACM/SIGPLAN, 1999.

[Hon92℄ K. Honda. Two bisimilarities for the �-
al
ulus. Te
hni
al Report 92-002, Keio University, 1992.

[HT91℄ K. Honda and M. Tokoro. An Obje
t Cal
ulus for Asyn
hronous Communi
ation. In P. Ameri
a, ed,

Pro
eedings of ECOOP '91, volume 512 of LNCS, pages 133{147. Springer, July 1991.

[HY95℄ K. Honda and N. Yoshida. On Redu
tion-Based Pro
ess Semanti
s. Theoreti
al Computer S
ien
e,

152(2):437{486, 1995. An extra
t appeared in Pro
eedings of FSTTCS '93, LNCS 761.

[JLHB88℄ E. Jul, H. Levy, N. Hut
hinson and A. Bla
k. Fine-Grained Mobility in the Emerald System. ACM

Transa
tions of Computer Systems, 6(1), Feb. 1988.

[KS98℄ J. Kleist and D. Sangiorgi. Imperative Obje
ts and Mobile Pro
esses. In D. Gries and W.-P. de

Roever, eds, Pro
eedings of PROCOMET '98, pages 285{303. International Federation for Information

Pro
essing (IFIP), Chapman & Hall, 1998.

[Mer00℄ M. Merro. Lo
ality in the �-
al
ulus and appli
ations to distributed obje
ts. PhD thesis, E
ole des

Mines, Fran
e, O
tober 2000.

[Mil93℄ R. Milner. The Polyadi
 �-Cal
ulus: A Tutorial. In F. L. Bauer, W. Brauer and H. S
hwi
htenberg,

eds, Logi
 and Algebra of Spe
i�
ation, volume 94 of Series F: Computer and System S
ien
es. NATO

Advan
ed Study Institute, Springer, 1993. Available as Te
hni
al Report ECS-LFCS-91-180, University

of Edinburgh, O
tober 1991.

[Mor68℄ J.-H. Morris. Lambda Cal
ulus Models of Programming Languages. PhD thesis, MIT, 1968.

[MS92℄ R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kui
h, ed, Pro
eedings of ICALP '92, volume

623 of LNCS, pages 685{695. Springer, 1992.

[MS98℄ M. Merro and D. Sangiorgi. On Asyn
hrony in Name-Passing Cal
uli. In K. G. Larsen, S. Skyum and

G. Winskel, eds, Pro
eedings of ICALP '98, volume 1443 of LNCS, pages 856{867. Springer, July 1998.

[NHKM00℄ U. Nestmann, H. H�uttel, J. Kleist and M. Merro. Aliasing Models for Mobile Obje
ts. A

epted

for Journal of Information and Computation. Available from http://www.
s.au
.dk/resear
h/FS/

ojeblik/. An extended abstra
t has appeared as Distinguished Paper in the Pro
eedings of EUROPAR

'99, LNCS 1685, 2000.

[PS96℄ B. C. Pier
e and D. Sangiorgi. Typing and Subtyping for Mobile Pro
esses. Mathemati
al Stru
tures

in Computer S
ien
e, 6(5):409{454, 1996. An extra
t appeared in Pro
eedings of LICS '93: 376{385.

[PW98℄ A. Philippou and D. Walker. On Transformations of Con
urrent Obje
t Programs. Theoreti
alextra
t

[San98℄ D. Sangiorgi. An Interpretation of Typed Obje
ts into Typed �-Cal
ulus. Information and Com-

putation, 143(1):34{73, 1998. Earlier version published as Rapport de Re
her
he RR-3000, INRIA

Sophia-Antipolis, August 1996.

[San99a℄ D. Sangiorgi. The Name Dis
ipline of Uniform Re
eptiveness. Theoreti
al Computer S
ien
e, 221(1{

2):457{493, 1999. An abstra
t appeared in the Pro
eedings of ICALP '97 , LNCS 1256, pages 303{313.

[San99b℄ D. Sangiorgi. The Typed �-Cal
ulus at work: A Proof of Jones's Parallelisation Theorem on Con
urrent

Obje
ts. Theory and Pra
ti
e of Obje
t-Oriented Systems, 5(1), 1999. An early version was in
luded

in the Informal pro
eedings of FOOL 4, January 1997.

[San00℄ D. Sangiorgi. Lazy Fun
tions and Mobile Pro
esses. In G. Plotkin, C. Stirling and M. Tofte, eds, Proof,

Language and Intera
tion: Essays in Honour of Robin Milner, Foundations of Computing. MIT Press,

May 2000. Available as INRIA Sophia-Antipolis Rapport de Re
her
he RR-2515.

[SW01℄ D. Sangiorgi and D. Walker. The �-
al
ulus: a Theory of Mobile Pro
esses. Cambridge University

Press, 2001. To appear.

[VHB

+

97℄ P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl and R. S
heidhauer. Mobile Obje
ts in Distributed

Oz. ACM Transa
tions on Programming Languages and Systems, 19(5):804{851, Sept. 1997.

[Wal95℄ D. Walker. Obje
ts in the �-
al
ulus. Information and Computation, 116(2):253{271, 1995.

45

Contents

1 Introdu
tion 1

1.1 Previous work . 1

1.2 Contribution . 2

1.3 Related work . 2

2 Lo
al �: An \Obje
t-Oriented" �-Cal
ulus 2

2.1 Terms and Types . 3

2.2 Operational and Behavioural semanti
s . 6

3 �jeblik: A Con
urrent Obje
t Cal
ulus 10

4 Towards a formal semanti
s for �jeblik 12

4.1 On the stability of alias
hains . 13

4.2 Cy
li
 alias
hains . 14

4.3 On forwarding requests within alias nodes . 15

5 A translational semanti
s for �jeblik 15

6 Properties of the translational semanti
s 21

6.1 The L�

+

-translation preserves well-typedness . 21

6.2 Properties of obje
t managers . 22

7 Towards a formalization of safe surrogation 24

7.1 Safety as an Equation . 24

7.2 On the absen
e of self-in
i
ted surrogation . 26

8 On the safety of surrogation 28

8.1 On
ommitting external surrogations . 28

8.2 External Surrogation is Safe . 29

8.3 Typing for External Surrogation . 31

9 Con
lusion 32

A Proofs 34

A.1 Proof of Lemma 2.14 . 34

A.2 Proof of Theorem 6.1 . 34

A.3 Proof of Lemma 6.5 . 37

A.4 Proof of Lemma 8.2 . 38

A.5 Proof of Lemma 8.3 . 40

A.6 Proof of Lemma 8.4 . 41

A.7 Proof of Lemma 8.5 . 42

A.8 Proof of Lemma 8.6 . 43

46

