
A Fully Abstract May Testing Semantics for Concurrent

Objects

Alan Jeffrey

CTI, DePaul University

Chicago, IL, USA

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

Brighton, UK

julianr@cogs.susx.ac.uk

October 2002

Abstract

This paper provides a fully abstract semantics for a variant of the concurrent object calculus.

We define may testing for concurrent object components and then characterise it using a trace

semantics inspired by UML interaction diagrams. The main result of this paper is to show that

the trace semantics is fully abstract for may testing. This is the first such result for a concurrent

object language.

1 Introduction

Abadi and Cardelli’s [1] object calculus is a minimal language for investigating features of object

languages such as encapsulated state, subtyping, and self variables. Gordon and Hankin [7] added

concurrent features to the object calculus, to produce the concurrent object calculus.

Prior work on the object calculus has concentrated on the operational behaviour of object sys-

tems, and type systems which provide type safety guarantees. The closest paper to ours is Gordon

and Rees’s [8] fully abstract semantics for the immutable single-threaded object calculus. There

has been no work on providing fully abstract semantics for concurrent mutable objects.

In this paper, we present the first fully abstract testing semantics for a variant of Gordon and

Hankin’s concurrent object calculus without subtyping. The lack of subtyping here affords a simpler

presentation of the labelled transitions and traces but we anticipate that the proof techniques used

here are robust enough to cater for subtyping also. This semantics was inspired by UML interaction

diagrams [4], which are a common tool for visualising interactions with object systems.

1.1 Interaction diagrams

Interaction diagrams (in particular sequence diagrams) were developed by Jacobson, and are now

part of the Unified Modeling Language standard [4]. Interaction diagrams record the messages

sent between objects of a component in an object system. These messages include method calls

∗Research partially supported by the Nuffield Foundation. University of Sussex technical report 2002:03

1

and returns (interaction diagrams include other forms of message, but we will not use these in this

paper).

A simple interaction with an integer reference object r of type IntRef

Sequence diagrams can be used for multithreaded applications, for example:

r : IntRef

set (5)

get ()

5

Here, two threads independently call methods of the object r, creating a race condition. In our

textual representation, we give the threads names, and we decorate each message with the thread

responsible for the message:

thread1〈call r.set(5)〉?
thread2〈call r.get

• Messages are incoming or outgoing message calls, or matching outgoing or incoming returns.

• Messages are decorated with thread identifiers.

• Messages may include fresh names.

We have only used a very small subset of sequence diagrams, which in turn is a very small subset

of UML, but in this paper we will show that this small subset is very expressive, and in particular

provides a fully abstract semantics.

1.2 The object calculus

The object calculus is a minimal language for modelling object-based programming. Abadi and

Cardelli [1] provided a type system and operational semantics for a variety of object calculi, and

proved type safety for them. Gordon and Hankin [7] have since extended this language to include

concurrent features.

In this paper, we shall investigate a variant of Gordon and Hankin’s concurrent object calculus,

which includes:

• A heap of named objects and threads.

• Threads can call or update object methods, can compare object or thread names for equality,

can create new objects and threads and can discover their own thread name.

• An operational semantics based on the π-calculus [19, 18], and a simple type system.

• A trace semantics as discussed in Section 1.1.

We are not considering many of the more advanced features of the object calculus or the concurrent

object calculus, such as recursive types, object cloning and object locking. This is just for simplicity,

and we do not see any technical problems with incorporating these features into our language.

In another strand of research Di Blasio and Fisher [3] also designed a calculus for modelling

imperative, concurrent object-based systems. As with Abadi and Cardelli’s object calculus and its

various extensions, the emphasis in Di Blasio and Fisher’s work is again on type systems and safety

properties for them.

1.3 Full abstraction

The problem of full abstraction was first introduced by Milner [17], and investigated in depth by

Plotkin [24]. Full abstraction was first proposed for variants of the λ-calculus, but has since been

investigated for process algebras [9], the π-calculus [6, 10], the ν-calculus [23, 14], Concurrent

ML [5, 15], and the immutable object calculus [8].

We can then define the may testing preorder [21, 9] as C1 ❁∼may C2 whenever:

for any appropriately typed C

if C1 ‖ C is successful then C2 ‖ C is successful

Unfortunately, although it is very simple to define, and is quite intuitive, may testing is often very

difficult to reason about directly, because of the quantification over ‘any appropriately typed C’. In

practice, we require a proof technique which we can use to show results about may testing.

One approach is to use a trace semantics, given by defining possible executions of components

C ==
s

⇒ C′ where s is a sequence of messages. We then write Traces(C) for the set of all traces of

C. We say that:

• Traces are sound for may testing when

Traces(C1) ⊆ Traces (C2) implies C1 ❁∼may C2.

• Traces are complete for may testing when

C1 ❁∼may C2 implies Traces (C1) ⊆ Traces (C2).

• Traces are

Components: C ::= 0 | C ‖ C | ν(n : T) .C | n[O] | n〈t〉
Objects: O ::= l = M, . . . , l = M

Methods: M ::= ς(n : T) .λ(x : T, . . . ,x : T) . 〈t〉
Threads: t ::= v | stop | let x : T = e in t

definition of fields f as zero-argument methods:

• A field declaration f = v in an object is syntax sugar for a method declaration f = ς(n :

T) .λ() . 〈v〉.

• A field type f : T in an object type is syntax sugar for a method type f : ()→ T .

• A field access expression v. f is syntax sugar for a method call v. f ().

• A field update expression n. f := v′ is syntax sugar for a method update n. f ⇐ (ς(p : T) .λ() .
〈v〉).

In addition, we have restricted many subexpressions of an expression to be values rather than full

expressions, for example in a method call v.l(~v) we require the object and the arguments to be

values rather than expressions e.l(~e). This makes the operational semantics much easier to define,

and does not restrict the expressivity of the language, for example we can define (e.l(~e)) ≡ (let x =
e in let ~x = ~e in x.l(~x)). Similarly, the distinction between threads and expressions makes the

A thread 〈t〉 consists of a stack of let-expressions, terminated either by a return value:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in v〉

or by a deadlocked stop thread:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in stop〉

Each expression is either itself a thread, or:

• an if expression if v1 = v2 then e1 else e2,

• a method call v.l(~v),

• a method update n.l ⇐ M, on a named object

• a new object new[O],

• a new thread new〈t〉, or

• the current thread name currentthread.

Each value is simply a name or a variable and we defer the discussion of types until Section 2.2.

2.2 Static semantics

The static semantics for our concurrent object calculus is given in Figures 2–6. Most of the rules

are straightforward adaptations of those given by Abadi and Cardelli [1]. The main judgement is

∆ ⊢ C : Θ which is read as ‘the component C uses names ∆ and defines names Θ’. For example, if

we define C1(v), C2 and IntRef as:

C1(v) ≡ p[
contents = v,
set = ς(this : IntRef) .λ(x : Int) .

∆ ⊢ 0 : ()

;∆,n : T ⊢ [O] : T

∆ ⊢ n[O] : (n : T)

;∆,n : thread ⊢ t : none

∆ ⊢ n〈t〉 : (n : thread)

∆,Θ2 ⊢ C1 : Θ1 ∆,Θ1 ⊢ C2 : Θ2

∆ ⊢ (C1 ‖ C2) : (Θ1,Θ2)

∆ ⊢ C : Θ,n : T

∆ ⊢ ν(n : T) .C : Θ

Figure 2: Rules for judgement ∆ ⊢ C : Θ

Γ;∆ ⊢ M1 : T.l1 · · · Γ;∆ ⊢ Mk : T.lk
Γ;∆ ⊢ [l1 = M1, . . . , lk = Mk] : T

Figure 3: Rule for judgement Γ;∆ ⊢ [O] : T (when T = [l1 : L1, . . . , lk : Lk])

Γ,x1 : T1, . . . ,xk : Tk;∆,n : T ⊢ t : U

Γ;∆ ⊢ ς(n : T) .λ(x1 : T1, . . . ,xk : Tk) . 〈t〉 : T.l

Figure 4: Rule for judgement Γ;∆ ⊢ M : T.l (when T = [. . . , l : (T1, . . . ,Tk) →U, . . .] and T.l is the

record l selected from T)

Γ;∆ ⊢ v1 : T1 Γ;∆ ⊢ v2 : T1

Γ;∆ ⊢ e1 : T2 Γ;∆ ⊢ e2 : T2

Γ;∆ ⊢ if v1 = v2 then e1 else e2 : T2

Γ;∆ ⊢ v : [. . . , l : (T1, . . . ,Tk)→ T, . . .]
Γ;∆ ⊢ v1 : T1 · · · Γ;∆ ⊢ vk : Tk

Γ;∆ ⊢ v.l(v1, . . . ,vk) : T

Γ;∆ ⊢ n : T Γ;∆ ⊢ M : T.l

Γ;∆ ⊢ n.l ⇐ M : T

Γ;∆ ⊢ [O] : T

Γ;∆ ⊢ new[O] : T

Γ;∆ ⊢ t : T

Γ;∆ ⊢ new〈t〉 : thread Γ;∆ ⊢ currentthread : thread

Γ;∆ ⊢ e : T1 Γ,x : T1;∆ ⊢ t : T2

Γ;∆ ⊢ let x : T1 = e in t : T2 Γ;∆ ⊢ stop : T Γ,x : T,Γ′;∆ ⊢ x : T Γ;∆,n : T,∆′ ⊢ n : T

Figure 5: Rules for judgement Γ;∆ ⊢ e : T

Variable contexts: Γ ::= x : T, . . . ,x : T Name contexts: ∆,Θ,Σ,Φ ::= n : T, . . . ,n : T

In variable contexts, variables must be unique, and are viewed up to reordering.

In name contexts, names must be unique, types must not be none, and are viewed up to reordering.

Figure 6: Syntax of name and variable contexts

9

Whenever ∆ ⊢ C : Θ contains a subexpression of the form n.l ⇐ M with n free, then n

appears in Θ.

This is intended to capture the common software engineering requirement that components should

not export mutable fields, instead they should export suitable get and set methods. For example, the

configurations C1 and C2 above are write closed, since the only updates are to this, but the following

component which writes directly to p.contents is not write closed:

C′
2 ≡ n〈let x = p.contents in p.contents := x+1;stop〉

For the remainder of the paper we will require components to be write closed. This makes de-

veloping a fully abstract semantics much simpler, since we do not need to model method update

directly.

2.3 Dynamic semantics

The dynamic semantics for our concurrent object calculus is given in Figures 7–10.

We define three relations between components:

• ≡, structural congruence, represents the least congruence on components which includes the

axioms in Figure 7.

• C
τ

→ C′ when C can reduce to C′ by the interaction of a thread and an object (either a method

call or a method update).

• C
β
→ C′ when C can reduce to C′ by a thread acting independentTL
T*89(define)-263.998(three)-263.985(rela)-21.9857(tions)-263.987(betwee)-0dy8 0 Td
(C)Tj
/R10 7.98(t42.013(the)-242j
/R10m2n5).〉\w〈e\C:

0 ‖ C ≡ C (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3) C1 ‖ C2 ≡ C2 ‖ C1

C1 ‖ ν(n : T) .C2 ≡ ν(n : T) . (C1 ‖ C2) ν(n1 : T1) .ν(n2 : T2) .C ≡ ν(n2 : T2) .ν(n1 : T1) .C

Figure 7: Axioms for structural congruence (where n is not free in C1)

n〈let x : T = v in t〉
β
→ n〈t[v/x]〉

n〈let x : T = (let x1 : T1 = e1 in e2) in t〉
β
→ n〈let x1 : T1 = e1 in (let x : T = e2 in t)〉

n〈let x : T = (if v = v then e1 else e2) in t〉
β
→ n〈let x : T = e1 in t〉

n〈let x : T = (if v1 = v2 then e1 else e2) in t〉
β
→ n〈let x : T = e2 in t〉 (v1 6= v2)

n〈let x : T = new[O] in t〉
β
→ ν(p : T) . (p[O] ‖ n〈let x : T = p in t〉) (2p=

)n〈let x : T =

n:n2in t〉

β
→ ν(p : T) . (n〈\

2.4 Testing preorder

We will now define the testing semantics for our concurrent object calculus. We will do this by

defining a notion of barb

(∆,n : thread ⊢ C :

then (where C1(v) is defined in Section 2.2) we have:

(⊢ C1(5) : Θ)
ν(n:thread).n〈call p.get()〉?

→

(⊢ (C1(5) ‖ n〈let x = p.get() in returnx〉) : Θ′)

⇒

(⊢ (C1(5) ‖ n〈return5〉) : Θ′)
n〈return5〉!

→

(⊢ (C1(5) ‖ n〈block〉) : Θ′)
n〈call p.set(6)〉?

→

(⊢ (C1(5) ‖ n〈let x = p.set(6) in returnx〉) : Θ′)

⇒

(⊢ (C1(6) ‖ n〈return6〉) : Θ′)
n〈return6〉!

→

(⊢ (C1(5) ‖ n〈block〉) : Θ′)

which corresponds to the interaction diagram:

p : IntRef

get ()

5

set (6)

6

For any component (∆ ⊢ C : Θ) we define its traces to be:

Traces(∆ ⊢ C : Θ) = {s | (∆ ⊢ C : Θ) ==
s
⇒ (∆′ ⊢ C′
/R10 10.9091 Tf
4.24258 0 Td
(‘)Tj
/R27 10.9091 Tf
9.06668 0 Td
(C)Tj
/R10 7.97011 Tfs0t (6)

the base language which would have been reached had the component and test actually interacted.

This operation of merging is defined below:

4.1 The merge operator

Define the partial merge operator C1!C2 on components as the symmetric operator defined up to

≡ where:
0!C = C

(ν(p : T) .C1)!C2 = ν(p : T) . (C1!C2)

(p[O] ‖ C1)!C2 = p[O] ‖ (C1!C2)

(p〈t〉 ‖ C1)!C2 = p〈t〉 ‖ (C1!C2)

(n〈t1〉 ‖ C1)! (n〈t2〉 ‖ C2) = n〈t1! t2〉 ‖ (C1!C2)

when n 6∈ dom (C1,C2) and p 6∈ fn (C2).
We overload notation and define the partial merge operator t1! t2 on threads as the symmetric

operator where:

(let x : T = block in t)! stop = stop

(let x : T = block in t1)! (let y : U = return (v : T) in t2) = (let y : U = block in t2)! (t1[v/x])

(let x : T = block in t1)! (let y : U = e in t2) = let y : U = e in ((let x : T = block in t1)! t2)

when e is block/return free and y 6∈ fv (t1).

Lemma 4.1 If ∆ ⊢ (C1 ‖ C2) : Θ then (C1!C2) ≡ (C1 ‖ C2).

Proof: An induction on the definition of C1!C2. ✷

Lemma 4.2 If C1!C2 ≡ C and C1↓b then C↓b.

Proof: An induction on the definition of C1!C2. ✷

4.2 Trace composition and decomposition

Given a trace s we write s̄ for the complementary trace:

ε̄ = ε Χ1

Proof: Given in Appendix A. ✷

Corollary 4.4 For any components (∆,Φ ⊢ C1 : Θ,Σ) and (Θ,Φ ⊢ C2 : ∆,Σ) such that C1!C2 ≡ C

and C⇓b then there exists some trace s such that (∆,Φ ⊢ C1 : Θ,Σ) ===
s

⇒ (∆′,Φ ⊢ C′
1 : Θ′,Σ′)

and (Θ,Φ ⊢ C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢ C′

2 : ∆′,Σ′) where either C′
1↓b or C′

2↓b.

Proof: We know that C⇓b which tells us that C ⇒ C′′ for some C′′ such that C′′↓b. We use Proposi-

tion 4.3 Part 2, to obtain a trace s1 such that

(∆,Φ ⊢ C1 : Θ,Σ) ==
s1

⇒ (∆′′,Φ ⊢ C′′
1 : Θ′′,Σ′′)

(Θ,Φ ⊢ C2 : ∆,Σ) ==
s̄1

⇒ (Θ′′,Φ ⊢ C′′
2 : ∆′′,Σ′′)

where ν(∆′′,Θ′′,Σ′′ \∆,Θ,Σ) . (C′′
1!C′′

2) ≡C′′. Given that C′′↓b we know that (C′′
1!C′′

2)↓b also. By

the definition of! we see that one of the following (or their symmetric counterparts) must hold:

• C′′
1↓b and we are done, or

• C′′
1 ≡ ν(∆1) . (n〈t1〉 ‖ C′′′

1) and C′′
2 ≡ ν(∆2) . (n〈t2〉 ‖ C′′′

2) where n〈t1! t2〉↓b. We now proceed

by induction on the definition of t1! t2 to show that for all such C′′
1 and C′′

2 , we can find s2

where:

(∆′′,Φ ⊢ C′′
1 : Θ′′,Σ′′) ==

s2

⇒ (∆′,Φ ⊢ C′
1 : Θ′,Σ′)

(Θ′′,Φ ⊢ C′′
2 : ∆′′,Σ′′) ==

s̄2

⇒ (Θ′,Φ ⊢ C′
2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b. There are two cases (up to symmetry of!):

– If t1 = let x : T = block in t ′
1 and t2 = let y : U = b.succ() in t′

2 then C′′
2 ↓b.

– If t1 = let x : T = block in t ′
1 and t2 = let y : U = return(v : T) in t′

2 then we have:

(∆′′,Φ ⊢ C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈return v〉?

→ (∆′′,∆′
2,Φ ⊢ ν(∆1) . (n〈t′

1[v/x]〉 ‖ C′′′
1) : Θ′,Σ′)

(Θ′′,Φ ⊢ C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈return v〉!

→ (Θ′′,Φ ⊢ ν(∆′′
2) . (n〈let y : U = block in t′2〉 ‖ C′′′

2) : ∆′′,∆′
2,Σ′′)

where ∆2 = (∆′
2,∆′′

2) and moreover:

n〈t1! t2〉 ≡ n〈(let y : U = block in t′
2)! t1[v/x]〉↓b

so by inductive hypothesis:

(∆′′,Φ ⊢ C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈return v〉?

→ ==
s2

⇒ (∆′,Φ ⊢ C′
1 : Θ′,Σ′)

(Θ′′,Φ ⊢ C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈return v〉!

→ ==
s̄2

⇒ (Θ′,Φ ⊢ C′
2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b, as required. ✷

16

4.3 Proof of soundness

Theorem 4.5 (Soundness of traces for may testing) If Traces(∆ ⊢ C1 : Θ) ⊆ Traces(∆ ⊢ C2 : Θ)
then ∆ |= C1 ❁∼may C2 : Θ

Proof: Suppose that Traces(∆ ⊢ C1 : Θ) ⊆ Traces(∆ ⊢C2 : Θ) and that we have (Θ,b : barb ⊢C0 : ∆)
such that (C1 ‖ C0)⇓b; we must show that (C1 ‖ C0)⇓b also.

Now, since (C1 ‖ C0)⇓b, we can use Corollary 4.4 to get:

(∆,b : barb ⊢ C1 : Θ) ==
s
⇒ (∆′,b : barb ⊢ C′

1 : Θ′,Σ′)

(Θ,b : barb ⊢ C0 : ∆) ==
s̄
⇒ (Θ′,b : barb ⊢ C′

0 : ∆′,Σ′)

∆ ⊢ ε : trace Θ

n

• If n 6∈ threads (s) then n is balanced in s.

• If n is balanced in s1 and s2 then n is balanced in s1 s2.

• If n is balanced in s then n is balanced in ν(∆) .n〈call p.l(~n)〉?s ν(Θ) .n〈returnv〉!.

• If n is balanced in s then n is balanced in ν(Θ) .n〈call p.l(~n)〉!sν(∆) .n〈returnv〉?.

Define popn(s) as:

• If n is balanced in s then popn(s) = ∗.

• If n is balanced in s and a =

Proof: Easy induction on s. ✷

Lemma 5.3

1. If C is block/return free and (∆ ⊢C : Θ) =
s
⇒ =========

ν(Θ′).n〈return v〉!
⇒ then s = s1 ν(∆′) .n〈call p.l(~v)〉? s2

where n is balanced in s2 .

2. If C is block/return free and (∆ ⊢C : Θ) =
s
⇒ =========

ν(∆′).n〈return v〉?
⇒ then s = s1 ν(Θ′) .n〈call p.l(~v)〉! s2

where n is balanced in s2 .

Proof: We prove these properties simultaneously by an induction on the length of s. We only show

the argument for Part 1 as Part 2 can be shown in a similar manner. By analysis of the rules of the

lts, we have:

(∆ ⊢ C : Θ) ==
s
⇒ (∆′′ ⊢ C′′[n〈let x : T = return (v : U) in t〉] : Θ′′)

ν(Θ′).n〈return v〉!
→

Now, partition s into s3 s2 picking s2

Case s = s′ ν(∆′) .n〈call p.l(~v)〉?. We know that

(∆ ⊢ C : Θ) ==
s′

⇒ (∆,∆(s′) ⊢ C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→

so we have that either

C′ ≡ ν(∆′) .ν(∆′′) .n〈let x : T = block in t〉 ‖ C′′

or n ∈ ∆,∆(s′) and n is a fresh thread to s′. We can apply the inductive hypothesis to s′ to

see that ∆ ⊢ s′ : trace Θ and we consider popn(s′): if n ∈ ∆,∆(s′) and n is fresh thread to

s′ then popn(s′) is necessarily ∗. Otherwise we know that C′ ≡ ν(∆′) . ν(∆′′) . n〈let x : T =
block in t〉 ‖ C′′ and therefore the last action which could have occurred at n must have been

an output, that is, popn(s′) = γ!. In both cases we see that

n is input enabled in ∆ ⊢ s′ : trace Θ (1)

We know that (∆,∆(s′) ⊢ C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→ and we know that the side-conditions

on the transition rule for ν(∆′) . γ? actions guarantees that

dom (∆′) ⊆ fn (~v) (2)

We also know that the side-conditions on rule for call-input actions guarantees that

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢ p.l(~v) : T and p ∈ Θ,Θ(s′)

We use this to see that

;Θ,Θ(s′),∆′ ⊢ p : [. . . l : (~T)→ T] (3)

and

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢~v : ~T (4)

Lastly, it is easy to see that

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢ n : thread (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type

rule which allows us to conclude

∆ ⊢ s′ ν(∆′) .n〈call p.l(~v)〉? : trace Θ

as required.

Case s = s′ ν(Θ′) .n〈call p.l(~v)〉!. Similar to previous case.

Case s = s′ ν(Θ′) .n〈returnv〉!. We know that

(∆ ⊢ C

∆ ⊢ s′ : trace Θ (1)

and we notice that because C is block/return free we can apply Lemma 5.3 to get:

s′ = s1 ν(∆′) .n〈call p.l(~v)〉? s2

where n is balanced in s2. Given this, we see that

popn(s1 ν(∆′) .n〈call p.l(~v)〉? s2) = ν(∆′) .n〈call p.l(~v)〉?

hence

popn(s′) = ν(∆′) .n〈call p.l(~v)〉? (2)

Again, the side-conditions on the transition rule for ν(Θ′) . γ! guarantee that

dom (Θ′) ⊆ fn (v) (3)

We also know, by (1) and the fact that prefixes of well-typed traces are also well-typed, that

∆ ⊢ s1 ν(∆′) .n〈call p.l(~v)〉? : trace Θ

and we see that this must have been inferred using a hypothesis

;Θ,Θ(s1) ⊢ p : [. . . l : (~U)→U ′ . . .]

which, by weakening, gives us

;Θ,Θ(s′) ⊢ p : [. . . l : (~U)→U ′ . . .] (4)

Lastly, because

(∆,∆(s′) ⊢ C′ : Θ,Θ(s′))

and

C′ ≡ C′[n〈let x : T = return (v : U) in t〉]

we see that

;∆,∆(s′),Θ,Θ(s′),Θ′ ⊢ v : U

So, by Lemma 5.2 together with the typing side-conditions for call-input transitions, we have

that U = U ′, and so

;∆,∆(s),Θ,Θ(s),Θ′ ⊢ v : U (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type

rule which allows us to conclude

∆ ⊢ s′ ν(Θ′) .n〈returnv〉! : trace Θ

as required.

Case s = s′ ν(∆′) .n〈returnv〉?. Similar to previous case. ✷

22

5.2 Information order on traces

The information preorder on traces ∆ ⊢ r ⊑ s : trace Θ is generated by axioms (where in each case

we require both sides of the inequation to be well-typed traces):

∆ ⊢ s ⊑ sr : trace Θ
∆ ⊢ sγ? ⊑ s : trace Θ

∆ ⊢ sγ1?γ2!r ⊑ sγ2!γ1?r : trace Θ
∆ ⊢ sν(∆) . γ1?γ2?r ⊑ sν(∆) . γ2?γ1?r : trace Θ
∆ ⊢ sν(Θ) . γ1!γ2!r ⊑ sν(Θ) . γ2!γ1!r : trace Θ

Lemma 5.5 (Information Order Duality) If ∆ ⊢ r γ! ⊑ sγ! : trace Θ and fn (γ)∩ Θ(r) = /0
and γ! 6∈ s,r then Θ ⊢ s̄ ⊑ r̄ : trace ∆.

Proof: We write ∆ ⊢ r ⊑n s : trace Θ if ∆ ⊢ r ⊑ s : trace Θ

Proposition 5.6 (Information Order Closure) If (∆ ⊢ C : Θ) ==
s
⇒ and ∆ ⊢ r ⊑ s : trace Θ

then (∆ ⊢ C : Θ) ==
r
⇒ .

Proof: Show that the following diagrams can be completed when thread (γ1) 6= thread (γ2):

·

Comp (∆ ⊢ s : trace Θ) = ν(Θ(s), ref : Ref,stateε : State) . (
ref[val = stateε] ‖
stateε[State(∆ ⊢ ε ≤ s : trace Θ)] ‖

∏{p[li = ref.val.inCallp.li:Li
| i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖

∏{n〈ref.val.outnone()〉 | n : thread ∈ Θ,Θ(s)}
)

Ref = [val : State]

State = [outT : ()→ T, inReturnT : (T)→ T, inCallp.l:L : L]

State(∆ ⊢ r ≤ s : trace Θ) = (
outT = OutT (∆ ⊢ r ≤ s : trace Θ),
inReturnT = InReturnT (∆ ⊢ r ≤ s : trace Θ),
inCallp.l:L = InCallp.l:L(∆ ⊢ r ≤ s : trace Θ)

)

OutT (∆ ⊢ r ≤ s : trace Θ) = λ() . (
when r a ≤ s and a = ν(Θ′) .n〈call p.l(~v)〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ⊢ p.l(~v) : U :

if currentthread = n then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
ref.val.inReturnU(p.l(~v));
ref.val.outT ()

when r a ≤ s and a = ν(Θ′) .n〈returnv〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ⊢ v : T :

if currentthread = n then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
v

otherwise :

stop

)

InReturnT (∆ ⊢ r ≤ s : trace Θ) = λ(x : T) . (
when r a ≤ s and a = ν(∆′) .n〈returnv〉? and ;∆,Θ,∆(r),Θ(r),∆′ ⊢ v : T :

if ∆,Θ,∆(r),Θ(r) ⊢ (currentthread,x) = ν(∆′) . (n,v) then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
v

otherwise :

stop

)

InCallp.l:(~T)→T (∆ ⊢ r ≤ s : trace Θ) = λ(~x : ~T) . (

when r a ≤ s and a = ν(∆′) .n〈call p.l(~v)〉? and ;∆,Θ,∆(r),Θ(r),∆′ ⊢~v : ~T :

if ∆,Θ,∆(r),Θ(r) ⊢ (currentthread,~x) = ν(∆′) . (n,~v) then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
ref.val.outT ()

otherwise :

stop

)

Figure 17: Definition of Comp (∆ ⊢ s : trace Θ)

26

if ∆ ⊢ () = ν() . () then t = t

if ∆ ⊢ (v,~v) = ν(p : U,~n : ~T) . (p,~p) then t = if v 6∈ ∆−1(U) then

(if ∆, p : U ⊢ (~v) = ν(~n : ~T) . (~p) then t)[v/p] else stop

if ∆ ⊢ (v,~)

5.4 Proof of completeness

Theorem 5.10 (Completeness of traces for may testing) If ∆ |= C1 ❁∼may C2 : Θ
then Traces(∆ ⊢ C1 : Θ) ⊆ Traces(∆ ⊢ C2 : Θ).

Proof: Choose any trace s1

1. If C1!C2 ≡ D ‖ E then there exist components such that C1 ≡ D1 ‖ E1 and C2 ≡ D2 ‖ E2 with

D ≡ D1!D2 and E ≡ E1!E2.

2. If C1!C2 ≡ ν(~n : ~T) .C then there exist components such that C1 ≡ ν(~n1 : ~T1) .C′
1 and C2 ≡

ν(~n2 : ~T2) .C′
2 with (~n : ~T) = (~n1 : ~T1,~n2 : ~T2) and C′ ≡ C′

1!C′
2.

Proof: Proved by induction on the derivation of C1!C2. ✷

Lemma A.2 If C1!C2 ≡ C and C1
β
→ C′

• Case (γ = ν(~n :~T) .n〈call p.l(~v)〉 and n ∈ Σ).

Similar to the previous case.

• Case (γ = ν(~n :~T) .n〈returnv〉).

Since (∆,Φ ⊢ C1 : Θ,Σ)
γ?
→ (∆′,Φ ⊢ C′

1 : Θ′,Σ′) we must have that:

C1 ≡ ν(~p1 : ~U1) . (C′′
1 ‖ n〈let x : T = block in t1〉)

C′
1 ≡ ν(~p1 : ~U1) . (C′′

1 ‖ n〈t1[v/x]〉)

∆′ = ∆,~n : ~T

Θ′ = Θ
Σ′ = Σ

Since (Θ,Φ ⊢ C2 : ∆,Σ)
γ!
→ (Θ′,Φ ⊢ C′

2 : ∆′,Σ′) we must have that:

C2 ≡ ν(~n : ~T) .ν(~p2 : ~U2) . (C′′
2 ‖ n〈let y : U = return(v : T) in t2〉)

C′
2 ≡ ν(~p2 : ~U2) . (C′′

2 ‖ n〈let y : U = block in t2〉)

We then show that:

C1!C2 ≡ ν(~n : ~T) .ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1 !C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and that:

C′
1!C′

2 ≡ ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1!C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and so:

ν(∆′,Θ′,Σ′ \ ∆,Θ,Σ) . (C′
1!C′

2) ≡ C

as required. ✷

Composition follows, by induction on the derivation of (∆,Φ ⊢ C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢ C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢ C′

2 : ∆′,Σ′), making use of Lemmas A.2, A.3 and A.4.

A.2 Decomposition

We show three lemmas, from which Decomposition follows.

Lemma A.5 For any ∆,Φ ⊢ C1 : Θ,Σ and Θ,Φ ⊢ C2 : ∆,Σ if (C1!C2) ≡ ν(~n : ~T) . (C ‖ n〈let x :

T = e in t〉) then either we have:

(∆,Φ ⊢ C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ ⊢ C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢ C′

2 : ∆′,Σ′)

where:

ν(∆′,Θ′,Σ′ \ ∆,Θ,Σ) .ν(~n1 : ~T1) . (C′
1 ‖ n〈t1〉)!C′

2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, swapping the roles of C1 and C2.

32

Proof: An induction on the derivation of:

(C1!C2) ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

The interesting case is when:

C1 ≡ n〈let x1 : T1 = block in t1〉

C2 ≡ n〈let x2 : T2 = return (v : T1) in t2〉

and:

n〈t1[v/x]〉!n〈let x2 : T2 = block in t2〉 ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

so by definition of the lts, and by induction we have:

(∆,Φ ⊢ C1 : Θ,Σ)
n〈return v〉?

→ (∆,Φ ⊢ n〈t1[v/x]〉 : Θ,Σ)

(∆,Φ ⊢ n〈t1[v/x]〉 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

and

(∆,Φ ⊢ C2 : Θ,Σ)
n〈return v〉!

→ (Θ,Φ ⊢ n〈let x2 : T2 = block in t2〉 : ∆,Σ)

(Θ,Φ ⊢ n〈let x2 : T2 = block in t2〉 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢ C′

2 : ∆′,Σ′)

where

ν(∆′,Θ′,Σ′ \ ∆,Θ,Σ) .ν(~n1 : ~T1) . (C′
1 ‖ n〈t1〉)!C′

2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, as required. ✷

Lemma A.6 If C1!C2 ≡ C and C
β1 ‖ n n2: 2.9091 Tf
-369.364 -19.8 Td
[(or)-263.992(symmetri10 10.9091 Tf
1 0d
(1)T74091 T0d
r).992861(e1)T511)

and so we use the axiom to get:

(∆,Φ ⊢ C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ C′

1 : Θ′,Σ′)

where we define:

C′
1 ≡ ν(~n1 : ~T1,~n

′ : ~T ′) . (C′′
1 ‖ E ‖ n〈let~x : ~T =~e in t1

• Case (p 6∈ dom (C′′
1),n ∈ dom (C′′

2)).

We must have that:

C′′
2 ≡ ν(~p : ~U) . (C′′′

2 ‖ p[O] ‖ n〈let y : U = block in t2〉)

Moreover, since C1 is write-closed we must have that the axiom is:

p[O] ‖ n〈let x : T = p.l(~v) in t〉
τ
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉

in which case:

(∆,Φ ⊢ C1 : Θ,Σ) =============
s ν(~n′

1:~T ′
1).n〈call p.l(~v)〉!

⇒ (∆,Φ ⊢ C′
1 : Θ′,~n′

1 : ~T ′
1,Σ′)

where we define:

C′
1 ≡ ν(~n′′

1 : ~T ′′
1) . (C′′

1 ‖ n〈let x : T = block in t1〉)

and we partition {~n1 : ~T1} into {~n′
1 : ~T ′

1,~n
′′
1 : ~T ′′

1 } such that {~n′
1} ⊆ fn (p.l(~v)) and {~n′′

1} ∩
fn (p.l(~v)) = /0.

We also have:

(∆,Φ ⊢ C2 : Θ,Σ) ==============
s ν(~n′

1:~T ′
1).n〈call p.l

B.1 Technical preliminaries

In a component ν(∆) . (p[O] ‖ C

A component for ∆ ⊢ r ≤ s : trace Θ (resp. for ∆ ⊢ q ⊑ r ≤ s : trace Θ) is one of the

form:

ν(Θ(s)\ Θ(q)) .ν(ref : Ref) .ν(stater′ : State | ∆ ⊢ r′ ≤ r : trace Θ) . (
ref[val = stater] ‖

∏{stater′ [State(∆ ⊢ r′ ≤ s : trace Θ)] | ∆ ⊢ r′ ≤ r : trace Θ} ‖

∏{p[li = ref.val.inCallp.li:Li
| i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖

∏{n〈tn〉 | n : thread ∈ Θ,Θ(s)} ‖

∏{n〈tn〉 | n : thread ∈ ∆,∆(s) and n ∈ threads (q)}
)

where tn is a thread at n for ∆ ⊢ r ≤ s : trace Θ (resp. for ∆ ⊢ q ⊑ r ≤ s : trace Θ).

A thread at n for ∆ ⊢ r ≤ s : trace Θ is one of the following:

1. let x : T = ref.val.outT () in t

where n is output-enabled in ∆ ⊢ r : trace Θ and t is a return (x : T) thread at n

for ∆ ⊢ r ≤ s : trace Θ.

2. let x : T = block in t

where n is input-enabled in ∆ ⊢ r : trace Θ and t is a return (x : T) thread at n

for ∆ ⊢ r ≤ s : trace Θ.

A return(v : T) thread at n for ∆ ⊢ r ≤ s : trace Θ is one of the following:

1. v

where n is balanced in r.

2. ref.val.inReturnT (v); t
where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉!, n is balanced in r2,

and t is a thread at n for ∆ ⊢ r1 ≤ s : trace Θ.

3. let y : U = return(v : T) in t

where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉?, n is balanced in r2,

and t is a return(y : U) thread at n for ∆ ⊢ r1 ≤ s : trace Θ.

Figure 20: Definition of a component for ∆ ⊢ r ≤ s : trace Θ and for ∆ ⊢ q ⊑ r ≤ s : trace Θ

37

A thread at n for ∆ ⊢ q ⊑ r ≤ s : trace Θ is one of the following:

1. stop

2. a thread at n for ∆ ⊢ r ≤ s : trace Θ
where projn (q) = projn (r).

3. let x : T = p.l(~v) in t

where projn (qa) = projn (r), a = ν(Θ′) .n〈call p.l(~v)〉!, and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

4. let x : T = return(v : U) in t

where projn (qa) = projn (r), a = ν(Θ′) .n〈returnv〉!, and t is a return (x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

5. let y : U = ref.val.inCallp.l:L(~v) in let x : T = return (y : U) in t

where projn (q) = projn (r a), a = ν(∆′) .n〈call p.l(~v)〉?, and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

6. t

where projn (q) = projn (r a), a = ν(∆′) .n〈returnv〉?, and t is a return (v : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ for some T .

7. ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t
where projn (q) = projn (r a), and t is a thread at n for ∆ ⊢ r a ≤ s : trace Θ.

8. t

where n〈t〉
β
→ n〈t′〉 and t′ is a thread at n for ∆ ⊢ q ⊑ r ≤ s : trace Θ

Figure 21: Definition of a thread for ∆ ⊢ q ⊑ r ≤ s : trace Θ

38

Proof: An inspection of the definition of Comp (∆ ⊢ s : trace Θ). ✷

Lemma B.4 If ∆ ⊢ r a ≤ s : trace Θ and ∆′ ⊢ C : Θ′ is a component for ∆ ⊢ r ≤ s : trace Θ
then (∆′ ⊢ C : Θ′) ==

a
⇒ (∆′′ ⊢ C′ : Θ′′) where C′ is a component for ∆ ⊢ r a ≤ s : trace Θ.

Proof: By considering the definition of ∆ ⊢ r : trace Θ we see that the following cases are exhaus-

tive:

1. Case a = ν(Θ′′′) .n〈returnv〉! and C ≡ ν(Θ′′′) .C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in let x :

T = return(y : U) in t〉]

We have:

(∆′ ⊢ C : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; let y : U = v in let x : T = return(y : U) in t〉] : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let y : U = v in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = return(v : U) in t〉] : Θ′)
a
→ (∆′ ⊢ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = block in t〉] : Θ′,Θ′′′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

2. Case a = ν(Θ′′′) .n〈call p.l(~v)〉! and C ≡ ν(Θ′′′) .C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in t〉]

We have:

(∆′ ⊢ C : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)

τ
→ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)
a
→ (∆′ ⊢ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = block in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′,Θ′′′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

3. Case a = ν(∆′′′) .n〈returnv〉? and C ≡C[ref[val= stater] ‖ n〈let x : T = block in ref.val.inReturnT (x); t〉]

39

We have:

(∆′ ⊢ C : Θ′)
a
→ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈let x : T = v in ref.val.inReturnT (x); t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈ref.val.inReturnT (v); t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈stater.inReturnT (v); t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢ C[ν(stater a : State) . ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈t〉] : Θ′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

4. Case a = ν(∆′′′) .n〈call p.l(~v)〉? and C ≡ C[ref[val = stater] ‖ n〈let x : T = block in t〉]

We have:

(∆′ ⊢ C : Θ′)
a
→ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈let y : U = p.l(~v) in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return (y : U) in t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈let y : U = stater.inCallp.l:L(~v) in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢ C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
let y : U = ref.val.out

Τδ
68609νβ

for ∆ ⊢ q ⊑ r ≤ s : trace Θ in Figures 20 and 21 with the intended meaning that a component for

∆ ⊢ q ⊑ r ≤ s : trace Θ has performed the trace q and this is ⊑ related to some prefix of s. Note

that, as prefix ordering ≤ on traces is contained in ⊑ �

3. Case C ≡ C[ref[val = stater] ‖ n〈ref .val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t〉]
τ
→ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖ n〈t〉] ≡ C′

where t is a thread at n for ∆ ⊢ r a ≤ s : trace Θ.

By definition, C′ is a component for ∆ ⊢ q ⊑ r a ≤ s : trace Θ.

4. Case C ≡ C[n〈let x : T = ref.val.outT () in t〉]
τ
→ C[n〈let x : T = stater.outT () in t〉] ≡ C′

where projn (q) = projn (r), n is output-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

If ∆ ⊢ r a ≤ s : trace Θ and a = ν(Θ′) .n〈call p.l(~v)〉! then:

C′ β
→∗ C[n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];

ref.val.inReturnU(p.l(~v)); let x : T = ref.val.outT () in t〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

If ∆ ⊢ r a ≤ s : trace Θ and a = ν(Θ′) . n〈returnv〉! then we must have that r = r1 ν(Θ′) .
n〈call p.l(~v)〉?r2 where n is balanced in r

t
→ 0 (x : T2 reffornq⊑ s : trace Θ.

IfΙφρΤϕ
/10. 10.
/Ρ10 8
7.601 Τφ
7.55977 3.96016 Τ4091 επ: :T =p : x : T = ref

2. Case (∆′ ⊢ C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈call p.l(~v)〉?

→ (∆′,∆′′′ ⊢ C[n〈let y : U =
p.l(~v) in let x : T = return (y : U) in t〉] : Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have:

C′ β
→∗ C[n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return(y : U) in t〉]

which is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

3. Case (∆′ ⊢ C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈return v〉?

→ (∆′,∆′′′ ⊢ C[n〈let x : T = v in t〉] :

Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have:

C′ β
→∗ C[n〈t[v/x]〉]

which is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

4. Case (∆′ ⊢ ν(Θ′′′) .C[n〈let x : T = p.l(~v) in t〉] : Θ′)
ν(Θ′′′).n〈call p.l(~v)〉!

→ (∆′ ⊢ C[n〈let x : T =
block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have C′ is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

5. Case (∆′ ⊢ ν(Θ′′′) .C[n〈let x : T = return(v : U) in t〉] : Θ′)
ν(Θ′′′).n〈return v〉!

→ (∆′ ⊢ C[n〈let x :

T = block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have C′ is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required. ✷

The ‘only if’ half of definability now follows, by induction on Lemmas B.6, B.7, and B.8, with

Lemma B.5 as the base case, making appropriate use of Corollary B.2.

43

References

[1] M. Abadi and L. Cardelli. A Theory Of Objcets. Springer-Verlag, 1996.

[17] R. Milner. Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci., 4:1–22, 1977.

[18] R. Milner. Communicating and Mobile Systems. Cambridge University Press, 1999.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses. Inform. and Comput.,

100(1):1–77, 1992.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Colloq. Automata, Languages

and Programming, volume 623 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[21] J.-H. Morris. Lambda calculus models of programming languages. Dissertation, M.I.T., 1968.

[22] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Struc-

tures in Computer Science, 6(5):409–454, 1996.

[23] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically

create local names, or: What’s new? In Proc. MFCS 93, pages 122–141. Springer-Verlag,

1993. LNCS 711.

[24] G. Plotkin. LCF considered as a programming language. Theoret. Comput. Sci., 5:223–256,

1977.

45

