
A complete axiomatization of timed bisimulation for



� The countable ordinals (ω1;+;0).



(S1) E +F = F +E

(S2) E+(F +G) = (E +F)+G

(S3) E +E = E

(S4) E+0 = E

(TD) ε(t):(E +F) = ε(t):E + ε(t):F
(TA) ε(t +u):E = ε(t):ε(u):E
(T0) ε(0):E = E

(R1) fix(x = E) = Effix(x= E)=xg

(R2) If F = EfF=xg, then F = fix(x= E), provided x is action guarded in E

FIGURE 2. The axiom system G

(MP) τ:E + ε(c):F = τ:E
(AP) a:E + ε(t):a:E = a:E

(NP) ε(t):0 = 0

FIGURE 3. The axiom system F is G plus (MP), (AP) and (NP)

(MP) τ:E + ε(c):F = τ:E
(P) E + ε(t):E = E

FIGURE 4. The axiom system E is G plus (MP) and (P)

Then E � F iff for all vectors P̃ = P1; : : :;Pm EfP̃=x̃g � FfP̃=x̃g.

PROPOSITION 1 ([20, THEOREM 5.1]). Timed bisimulation equivalence forms

a congruence over TC.

In the remainder of this paper, we shall present a complete axiomatization of �

over TC.

3 Axiomatization and soundness

In [20] various equational laws were proved to hold for Wang Yi’s timed CCS

modulo timed bisimulation equivalence, and in [21] a set of such axioms was

shown to be complete over the language of recursion-free TC0 processes with

delays from the time domain of the positive reals. We shall now present an ax-

iomatization which will be proven complete for � over the whole of TC, i.e.,

complete for regular process expressions with action guarded recursion. The de-

tailed proof of completeness occupies Section 4 of this paper.

Wang’s axiomatization for recursion-free TC0 processes is given by the ax-

iom system F in Figures 2 and 3. Our axiomatization for regular TC process

expressions is given by the axiom system E



4 Completeness

In this section, we shall present the proof of completeness of the set of laws E over

TC. The structure of the proof of this result will follow closely the most beautiful

arguments used by Milner in [14, 16] to prove the completeness of the axioma-

tizations for strong bisimulation and observational congruence over regular CCS

processes.

The structure of the completeness proof will be as follows: first of all, we shall

show that every TC expression E provably satisfies a certain kind of equation set.

This is what Milner calls the Equational Characterization Theorem. Next, we

shall show that if E � F and E provably satisfies an equation set, while F prov-

ably satisfies another equation set, then both E and F provably satisfy a common

equation set. Finally, we show that whenever two TC expressions provably sat-

isfy the same equation set, then E proves that they are equal.

DEFINITION. An equation set x̃ = Ẽ is a finite non-empty sequence of declara-

tions x1 = E1; : : :;xn = En, where the xis are pairwise distinct variables, and the

Eis are TC expressions.

A vector F̃ = F1 : : :Fn satisfies x̃ = Ẽ iff 8i :Fi � EifF̃=x̃g.

For an equational theory T , a vector F̃ = F1 : : :Fn T -provably satisfies x̃ = Ẽ

iff 8i :T ` Fi = EifF̃=x̃g.

An expression E (T -provably) satisfies x̃ = F̃ iff we can find a vector Ẽ which

(T -provably) satisfies x̃ = F̃ and E � E1 (T ` E = E1).

We refer to x1 as the leading variable of the equation set x̃ = F̃.

For example, the equation set:

x1 = ε(1



= E1 (4)

and:

G ` E1

= F1fE=wg (4)

= H1fF̃=x̃gfE=wg (3)

= H1fE=wgfF̃fE=wg=x̃g (Propn 5.1)

= H1fE=wgfẼ=x̃g (4)

= H1fẼ=x̃g (w 62 fvH1)

and so:

G ` Ei

= FifE=wg (4)

= HifF̃=x̃gfE=wg (3)

= HifE=wgfF̃fE=wg=x̃g (Propn 5.1)

= HifE=wgfẼ=x̃g (4)

= HifH1fẼ=x̃g=wgfẼ=x̃g (above)

= HifH1=wgfẼ=x̃g (Propn 5.2)

= GifẼ=x̃g (5)

Thus we have found a standard x̃ = G̃ which E G-provably satisfies. 2

Theorem 6 shows that every expression E in TC G-provably satisfies a standard

equation set x̃ = G̃. The second stepping stone towards the promised complete-

ness theorem is a result showing that if E � F , where F G-provably satisfies a

standard equation set ỹ = H̃, then there re re re re t ˜



Thus each summand of Gii0fH̃=z̃g can be absorbed into Hii0 , and by (S1)–(S4):

E `Hii0 = Hii0 +Gii0fH̃=z̃g (15)

We now show that the converse also holds, namely that Hii0 can be absorbed into

Gii0fH̃=z̃g. To this end, by (9) and (13), it is sufficient to prove that each summand

of FifẼ=x̃g can be absorbed into Gii0fH̃=z̃g. Again, we distinguish three cases

depending on the form the summand takes.

For any i R i0 and j 2 Ji, either:

� t j � uk, for every k 2 Ki, or:

�



= Hii0 +Gii0fH̃=z̃g (15)

= Ei +Gii0fH̃=z̃g (13)

= FifẼ=x̃g+Gii0fH̃=z̃g (9)

= Gii0fH̃=z̃g (18)

Thus H̃ E-provably satisfies z̃ = G̃, and E ` E = E1 = H11 so E E-provably sat-

isfies z̃ = G̃. Similarly, E 0 E-provably satisfies z̃ = G̃. 2

The final ingredient of the proof of completeness is a result showing that every

standard equation set has a unique solution up to provable equality.

THEOREM 8 (UNIQUE SOLUTION). If x̃ = H̃ is a standard equation set, then

there is a TC expression E which E-provably satisfies it. Moreover, if another

TC



= ∑
i2I

ε(ti):µi:Pi + ε(t + ti):µi:Pi (t +(u� t) = u)

= ∑
i2I

ε(ti):µi:Pi + ε(t):ε(ti):µi:Pi (TA)

= ∑
i2I

ε(ti):µi:Pi +∑
i2I

ε(t):ε(ti):µi:Pi (S1,S2)

= ∑
i2I

ε(ti):µi:Pi + ε(t):∑
i2I

ε(ti):µi:Pi (TD,NP)

= P+ ε(t):P (19)

Thus F can show any closed instantiation of axiom (P). 2

Note that throughout the above proof we have been careful not to assume that the

monoidal operation + on the time domain is commutative. Although this is true

for most of the examples of time domain one encounters in the literature, it does

not hold for, e.g., the time domain of the countable ordinals (ω1;+;0).

6 Concluding remarks

In this paper, we have presented a complete axiomatization of timed bisimulation

equivalence over open terms with finite-state recursion in a generalization of the

regular subcalculus of Wang’s timed CCS. Our inference system for timed bisim-

ulation equivalence is obtained by combining an improved version of Wang’s

complete axiomatization for finite trees [21] with standard laws for recursively

defined processes. The proof of completeness of the proposed axiomatization

uses an adaptation of Milner’s classic arguments presented in [14, 16].
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