A complete axiomatization of timed bisimulation for

• The co_untab e ordina s (ω , +,)-

S E + F = F + ESF E + (F + G) = (E + F) + GS E + E = ES $E + \mathbf{0} = E$ TD $\varepsilon(t).(E+F) = \varepsilon(t).E + \varepsilon(t).F$ $\varepsilon(t+u).E = \varepsilon(t).\varepsilon(u).E$ TA $\epsilon() = E$ Т R $\mathbf{fix}(x=E) = E\{\mathbf{fix}(x=E)/x\}$ If $F = E\{F/x\}$, then F = fix(x = E), provided x is action g, arded in E FIG REF-The axio syste GMP $\tau . E + \varepsilon(c) . F = \tau . E$ AP $a.E + \varepsilon(t).a.E = a.E$ NP $\epsilon(t) \cdot \mathbf{0} = \mathbf{0}$ FIG RE – The axio syste \mathcal{F} is $\mathcal{G} p_{1}$ s MP, AP and NP

FIG RE – The axio syste \mathcal{E} is $\mathcal{G} p_{us}$ MP and P

Then $E \sim F$ iff for all vectors P = P,..., $P_m E\{P/x\} \sim F\{P/x\}$.

PROPOSITION F. THEOREM $\frac{5}{2}$ – – *Timed bisimulation equivalence forms a congruence over* **TC**.

In the reainder of this paper we sha present a copete axio atization of \sim over TC-

3 Axiomatization and soundness

RF

In **F** various equationa aws were proved to hold for, ang Yi s ti ed CCS oduo ti ed bisi u ation equiva ence and in **F** a set of such axio s was shown to be co p ete over the anguage of recursion free **TC** processes with de ays fro the ti e do ain of the positive reas $\frac{1}{2}$ e sha now present an ax io atization which wi be proven co p ete for ~ over the who e of **TC** i-eco p ete for reguar process expressions with action guarded recursion-The de tai ed proof of co p eteness occupies Section of this paper-

ang s axio atization for rec_ursion free **TC** processes is given by the ax io syste \mathcal{F} in Figures F and $-O_{u}r$ axio atization for reg_u ar **TC** process expressions is given by the axio syste \mathcal{E} in $\mathbf{b} - \mathbf{e}$ d e $\mathbf{e} - \mathbf{x}$ u $- \mathbf{e}$

4 Completeness

In this section, we sha present the proof of co p eteness of the set of aws \mathcal{E} over **TC**-The str_uct_ure of the proof of this res_ut wi fo ow c ose y the ost bea_utif_u arg_u ents used by Mi ner in , to prove the co p eteness of the axio a tizations for strong bisi u ation and observationa congruence over reg_u ar CCS processes-

The str_uct_ure of the co p eteness proof wi be as fo ows rst of a, we sha show that every **TC** expression *E* provab y satis es a certain kind of eq_uation set– This is what Mi ner ca s the *Equational Characterization Theorem*– Next we sha show that if $E \sim F$ and *E* provab y satis es an equation set while *F* prov ab y satis es another equation set then both *E* and *F* provab y satisfy a co on equation set–Finally we show that whenever two **TC** expressions provab y sati sfy the sale equation set then \mathcal{E} proves that they are equa –

DEFINITION- An equation set x = E is a finite non-empty sequence of declarations x = E,..., $x_n = E_n$, where the x_i s are pairwise distinct variables, and the E_i s are **TC** expressions.

A vector $F = F \dots F_n$ satis es x = E iff $\forall i \cdot F_i \sim E_i \{F/x\}$.

For an equational theory \mathcal{T} , a vector $F = F \dots F_n \mathcal{T}$ -provab y satis es x = Eiff $\forall i \dots \mathcal{T} \vdash F_i = E_i \{F/x\}$.

An expression $E(\mathcal{T}\text{-provably})$ satisfies x = F iff we can find a vector E which $(\mathcal{T}\text{-provably})$ satisfies x = F and $E \sim E(\mathcal{T} \vdash E = E)$.

We refer to x as the leading variable of the equation set x = F.

For exa $p \in$ the equation set

 $x = \varepsilon($

$$G \vdash E$$

$$= F \{E/w\}$$

$$= H \{F/x\}\{E/w\}$$

$$= H \{E/w\}\{F\{E/w\}/x\}$$

$$= H \{E/w\}\{E/x\}$$

$$= H \{E/x\}$$

$$w \notin fvH$$

and so

G

$\vdash E_i$	
$= F_i \{E/w\}$	
$= H_i\{F/x\}\{E/w\}$	۲.
$= H_i \{E/w\} \{F\{E/w\}/x\}$	Propn 2–
$= H_i \{E/w\} \{E/x\}$	
$= H_i \{ H \{ E/x \} / w \} \{ E/x \}$	above
$= H_i \{H / w\} \{E/x\}$	Propn 🕹
$= G_i \{E/x\}$	ل م

Th_us we have fo_und a standard x = G which E G provab y satis es–

= E

Theore shows that every expression E in **TC** \mathcal{G} provab y satis es a standard eq_uation set x = G-The second stepping stone towards the pro-ised co-p ete ness theore is a res_ut showing that if $E \sim F_{\star}$ where $F \mathcal{G}$ provab y satis es a standard eq_uation set $y = H_{\star}$ then there re re re t

Th_us each s_u and of $G_{ii'}$ {H/z} can be absorbed into $H_{ii'}$ and by S S

$$\mathcal{E} \vdash H_{ii'} = H_{ii'} + G_{ii'} \{H/z\}$$

 \int e now show that the converse a so ho ds na e y that $H_{ii'}$ can be absorbed into $G_{ii'}{H/z}$ -To this end by \checkmark and \downarrow it is s_uf cient to prove that each s_u and of $F_i\{E/x\}$ can be absorbed into $G_{ii'}\{H/z\}$ - Again, we disting the three cases depending on the for the s_u and takes— For any $i \mathcal{R}$ i' and $j \in J_i$ either

- $t_j \leq u_k$ for every $k \in K_k$ or
- there exists $k \in K_i$ such that $t_i > u_k -$

 $\frac{1}{2}$ e proceed to show that in either case

$$\mathcal{E}\vdash G_{ii'}\{H/z\}=G_{ii'}\{H/z\}$$

$$= H_{ii'} + G_{ii'} \{H/z\}$$

= $E_i + G_{ii'} \{H/z\}$
= $F_i \{E/x\} + G_{ii'} \{H/z\}$
= $G_{ii'} \{H/z\}$

_

Thus $H \not E$ provab y satisfies z = G and $\mathcal{E} \vdash E = E = H$ so $E \not E$ provab y satisfies z = G-Si i ary $E' \not E$ provab y satisfies z = G-

The na ingredient of the proof of co p eteness is a res_u t showing that every standard equation set has a $_{u}niq_{u}e$ so $_{u}tion _{u}p$ to provab e equa ity-

THEOREM NIQ E SOL TION – If x = H is a standard equation set, then there is a **TC** expression *E* which *E*-provably satisfies it. Moreover, if another **TC**

$$= \sum_{i \in I} \varepsilon(t_i) . \mu_i . P_i + \varepsilon(t + t_i) . \mu_i . P_i \qquad t + (u - t) = u$$

$$= \sum_{i \in I} \varepsilon(t_i) . \mu_i . P_i + \varepsilon(t) . \varepsilon(t_i) . \mu_i . P_i \qquad TA$$

$$= \sum_{i \in I} \varepsilon(t_i) . \mu_i . P_i + \sum_{i \in I} \varepsilon(t) . \varepsilon(t_i) . \mu_i . P_i \qquad S \, SF$$

$$= \sum_{i \in I} \varepsilon(t_i) . \mu_i . P_i + \varepsilon(t) . \sum_{i \in I} \varepsilon(t_i) . \mu_i . P_i \qquad TD NP$$

$$= P + \varepsilon(t) . P \qquad \blacksquare$$
can show any c osed instantiation of axio $P - \Box$

Thus \mathcal{F} can show any c osed instantiation of axio P –

Note that throughout the above proof we have been caref₁, not to ass_1 , e that the onoida operation + on the ti e do ain is co tative - A though this is true for ost of the exa p es of ti e do ain one encounters in the iterature it does not ho d for e-g- the ti e do ain of the co_untab e ordina s (ω , +,)-

6 Concluding remarks

In this paper we have presented a co p ete axio atization of ti ed bisi h ation eq_1 iva ence over open ter s with nite state rec_1 rsion in a generalization of the reg_u ar s_ubca c_{u u}s of, ang s ti ed CCS– O_{u} r inference syste for ti ed bisi u ation equiva ence is obtained by co bining an i proved version of, ang s co p ete axio atization for nite trees \mathbf{F} with standard aws for recursive y de ned processes- The proof of co p eteness of the proposed axio atization uses an adaptation of Mi ner s c assic \arg_u ents presented in -

Int pea

-Ho er K-G-Larsen and, ang Yi- Deciding properties of reg_u ar rea ti ed processes-Report \checkmark F. Institut for E ectronic Syste s Depart ent of Mathe atics and Co puter Sci ence Aa borg niversity Centre \checkmark - An extended abstract appeared in the *Proceedings of CAV '91*-