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independent server, together with a private return hannel r, generated

spei�ally for this purpose. A response is awaited from the servie, on

the reply hannel r, whih is then forwarded on the original return hannel

y.

Numerous typing
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respet to �, interating with P . After an interation on the hannel req

the proess evolves to P

1

:

(new r

:

R)

s

!hv; ri j r?(z)

b

!(z) ;

for some value v and hannel

b

sent by the observer. At this stage both

the observer and the observed proess P

1

an still be typed relative to �,

as both v and

b

must have been known to the observer, and therefore be

typeable in �. However now the observed proess generates a new hannel

r

, with type R = frhinti;whintig. But beause of the type assoiated

with

s

in �,

r

is only sent to the observer with the subtype onsisting of

the one apability whinti. Subsequently the observer 984 0 Td66 Td
(in97 Td
[(resp)-2C)℄TJ
57.3ork4797 0 Td
(of)Tj
18 0(with)Tj
33.1199 0285hw
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whih indiates that in addition P uses hannels with seurity level at

most �. Similarly we have a typing relation

� `

�

P

indiating that P uses hannels with at least seurity level �. Indeed we

an go further, designing relations suh as � `

r�

P or � `

w�

P where the

read apabilities or the write apabilities of proesses are independently

onstrained. For all of these typing relations Subjet Redution is easily

established.

Setion 3 is the heart of the paper. First the behavioural preorders and

equivalenes are de�ned, by adapting the standard framework, [14, 9℄, to

the seurity �-alulus. We obtain the relations

� .

�

P '

may

Q

and

� .

�

P '

must

Q

indiating that P and Q an not be distinguished, relative to may/must

experiments respetively, by any testing proess T suh that � `

�

T , that

is any test running at seurity level at most �, relative to the type envi-

ronment. This is followed by an exposition of the Context LTS, ations in

ontext, and their properties. Sub-setion 3.3 then ontains an alternative

haraterisation of '

may

in terms of sequenes of ations in ontext, while

in Subsetion 3.4 we give the muh more ompliated haraterisation of

'

must

.

One bene�t of having behavioural equivalenes relativised to seurity

levels is that non-interferene results an be stated suintly. Setion 4

ontains two suh statements, and their proofs. The �rst gives onditions

ensure that

� .

�

P '

may

Q implies � .

�

P jH '

may

Q jK:

It turns out to be suÆient to require that the read apabilities of P and Q

be bounded above by �, that is � `

r�

P;Q, and that the write apabilities

of H and K be bounded below by some Æ 6� �, that is � `

wÆ

H; K.

This is quite a general non-interferene result. For example in the ase

where Q is P and K is the empty proess 0 we obtain

� .

�

P '

may

P jH

indiating that, under the onditions of the theorem, the proess H an

not interfere with the behaviour of P .

This result is not true for the must equivalene. As explained in Se-

tion 4, this is beause our types allow ontention between proesses run-
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be the least sets, and <

:

; onsistent the least relations, whih satisfy:

(rt-base)

B

�

2 Type

�

� � �

(rt-wr)

A 2 Type

�

w

�

hAi 2 Cap

�

(rt-wrrd)

S �

fin

Cap

�

S 2 Type

�

S onsistent

(rt-rd)

A 2 Type

�

r

�

hAi 2 Cap

�

� � �

(rt-tup)

A

i

2 Type

�

(8i)

(A

1

; : : : ;A

k

) 2 Type

�

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B

(u-base) B

�

<

:

B

�

if � � �

(u-res) fap

i

g

i2I

<

:

fap

0

j

g

j2J

if (8j)(9i) ap

i

<

:

ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i

The set of apabilities Cap is onsistent if

� w

�

hAi; w

�

hBi 2 Cap implies � = � and A is B

� r

�

hAi; r

�

hBi 2 Cap implies A is B

� w

�

hAi; r

�

hBi 2 Cap implies A <

:

B.

These types orrespond very losely to the I-types of [10℄; the rule

(rt-rd) ensures that only write-ups are allowed, from low-level proesses

to high-level proesses. But we allow multiple read apabilities, whih will

enable us to be more exible with respet to allowing/disallowing reading

from a hannel at di�erent seurity levels. However subtyping is more

restritive; unlike [10℄ they an only be sub-typed at the same seurity

level; r

�

hAi <

:

r

�

hBi only if � = �. Nevertheless this is ompensated for

in the existene of multiple read apabilities.

Example 2.2.

� The set fw

bot

hinti; r

bot

hinti; r

top

hintig is a bot-level hannel type, an

element of Type

bot

; that is hannels of this type may be transmitted

on bot-level hannels. In turn these hannels may be written to by a

bot-level proess or read by either a bot-level or a top-level proess.

� The type fw

bot

hinti; r

top

hintig restrits reading from the hannel to

top-level proesses, although bot-level ones an write to it.
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Figure 3 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A ` P

� ` u

:

r

�

hAi

� ` u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� ` u!hvi

(t-eq)

� ` u

:

A; v

:

B

� ` Q

� u fu

:

B; v

:

Ag ` P

� ` if u = v then P else Q

(t-new)

�; a

:

A ` P

� ` (new a

:

A) P

(t-str)

� ` P; Q

� ` P jQ; �P; 0

� <

:

� if for all u in the domain of �, �(u) <

:

�(u). We will normally ab-

breviate the simple environment fu

:

Ag to u

:

A and moreover use v

:

A to

denote its obvious generalisation to values; this is only well-de�ned when

the value v has the same struture as the type A.

The �rst typing system is given in Figure 3, where the judgements take

the form

� ` P

Intuitively this means that the proess P uses all hannels as input/output

devies in aordane with their types, as given in �. It is the standard

typing system for the �-alulus, [16℄, adapted to our types; note that the

seurity levels on the apabilities do not play any role.

We an also design a type inferene system whih not only ensures that

hannels are used aording to their types but also ontrols the seurity

levels of the hannels used. One suh system is given in Figure 4, where

the judgements now take the form

� `

�

P

This indiates that not only is P well-typed as before but in addition it uses

hannels with seurity level at most �. (This orresponds to the typing

system used in [10℄.) The only di�erene is in the input/output rules,

where the seurity level of the hannels used are heked. For example

� `

�

a!hvi only if in � the hannel a an be assigned a seurity level Æ � �,

in addition to having the appropriate output apability in �.

We an also design a typing system

� `

�

P
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a?(X

:

B)R, the move is a?(X)R

a?v

��! Rfj

v

=Xjg and � `

�

P . From the

typing rules we have � ` a

:

r

Æ

hBi for some Æ � � and �; X

:

B `

�

R. From

the former we know that there exists some A <

:

B suh that r

Æ

hAi 2 �(a);

from the latter, and Subsumption, we have �; X

:

A `

�

R. A standard

Substitution Lemma an now be applied for any v suh that � u v

:

A is

well-de�ned to obtain � u v

:

A `

�

Rfj

v

=Xjg.

�

3 Behavioural Theories

In this setion we develop two behavioural theories of typed proesses,

based on the general testing theories of [14, 9℄. In the �rst setion we adapt

the original de�nitions from [14, 9℄ to our language. This is followed by a

subsetion de�ning the Context LTS alluded to in the Introdution. Two

further subsetions use this LTS to determine the may and must versions

of our behavioural equivalene.

3.1 Testing Proesses

A test or observer is a proess with an ourrene of a new reserved

resoure name !, used to report suess. We let T to range over tests,

with the typing rule � `

�

!!hi for all �. When plaed in parallel with a

proess P , a test may interat with P , produing an output on ! if some

desired behaviour of P has been observed. We write

P may T

T j P

�

�!

�

R for some R suh that R an report suess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whih an report suess.

We an obtain a testing based behavioural preorder between proesses

by demanding that they reat in a similar manner to a given lass of tests.

Here we hoose the lass of tests whih are well-typed and use hannels

from at most a given seurity level �; that is we require that proesses

reat in the same manner to all tests T suh that � `

�

T .

Definition 3.1 (Testing Preorders). We write � .

�

P

�

�

may

Q if for

every test �nite T suh that � `

�

T , P may T implies Qmay T .
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Similarly � .

�

P

�

�

must

Q means that for every suh T , P must T implies

Qmust T .

We use '

may

and '

must

denote the related equivalene relations.

So for example setting � to be bot, � .

bot

P '

may

Q means that in the

type environment �, P and Q are indistinguishable by low-level observers,

from a may testing point of view.

For tehnial reasons we have limited tests to be �nite, that ontain

no ourrene of the reursive operator �. It is well-known (see [9℄) that

this does not lead to any less distinguishing power.

3.2 The Context Labelled Transition System

It is well-known, [14, 9℄, that testing equivalenes are losely related to the

ability of proesses to perform sequenes of ations. We have explained in

the Introdution that here we need to relativise these sequenes to seurity

levels and to a pair of typing environments, one for the observer and one

for the proess being observed.

The rules for the Context LTS, are given in Figure 5. The judgements

take the form

�;� . P

�

�!

�

�

0

; �

0

. P

0

This judgement should be
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proess a!hvi at any type B suh that � ` a

:

r

Æ

hBi, where Æ � �. However

to eliminate muh potential nondeterminism in the LTS our rule ditates

that for a given Æ � � the observer reeives v at the minimum B suh that

� ` a

:

r

Æ

hBi; this is the type A suh that r

Æ

hAi 2 �(a).

Note that in the output ations we do not reord the types of the

bound names. These we only required in Figure 2 in order to implement

ommuniation between proesses; see the rule (l-om). Here we do not

need to formalise, at least diretly, ommuniation between the proess P

and its observer.

We an desribe preisely the form these judgements in an take:

Lemma 3.2. Suppose �;� . P

�

�!

�

�

0

; �

0

. P

0

.

� = � : Here �

0

= � and �

0

= �.

� = a?v: Here �

0

= � while �

0

= � u v

:

A for some type A suh that

� ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B <

:

A

� = (~)a!v: Here �

0

= �; ~

:

~

C for some sequene of types

~

C suh that

�; ~

:

~

C ` v

:

A, while �

0

= �uv

:

A for some A suh that r

Æ

hAi 2 �(a),

where Æ � �.

Proof. Straightforward rule indution on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

However we are only interested in a subset of the possible judgements

whih an be derived from the rules in Figure 5. We say that the two type

environments � and � are ompatible if

� � u� exists

� domain(�) � domain(�).

The main property of this relation is given by:

Lemma 3.3. Suppose � and � are ompatible. Then � ` a

:

w

�

hAi and

� ` a

:

r

�

0

hA

0

i imply A <

:

A

0

and � � �

0

.

Proof. Simple alulation. �

The triple �;� . P is said to be a on�guration if

� � and � are ompatible

� � ` P .

When this is the ase we will refer to the judgment �;�.P

�

�!

�

�

0

; �

0

.P

0

as an ation in ontext.

Con�gurations are preserved by these ations:
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Lemma 3.4. If �;� . P

�

�!

�

�

0

; �

0

. P

0

is an ation in ontext then

�

0

; �

0

. P

0

is a on�guration.

Proof. From Lemma 3.2 we know exatly the form �

0

and �

0

an take,

depending on �. In eah ase it is straightforward to show that they are

ompatible. The simplest way to show that �

0

` P

0

is to use rule indution

on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

In future we will limit our attention to judgements �;�.P

�

�!

�

�

0

; �

0

.P

0

,

whih are ations in ontext. This has important onsequenes, in the ase

when � is an output ation (~

:

~

C)a!v. It means that the only new names

gained by the observer, that is names in the domain of �

0

whih are not

in that of �, are ~. In other words if w is an identi�er in v whih does

not our in ~ the observer already knows about it. However the ation

may inrease the type at whih the observer knows w. It is also worth

noting that the two rules (-in) and (-out) are apriori partial; that

is (-in) an only be applied if � u v

:

A is well-de�ned while (-out)

requires � u v

:

A to be well-de�ned. However it is easy to show that for

ations in ontext these environments are in fat well-de�ned whenever

the orresponding premises hold. Moreover in (-in) the side-ondition

B <

:

A may be omitted as it is always satis�ed.

We an also determine the irumstanes under whih the unon-

strained ations, from Figure 5, an give rise to ations in ontext.

Lemma 3.5. Suppose P

�

�! Q and let �;� . P be a on�guration.

� = � : Here �;� . P

�

�!

�

�;� . Q

� = a?v: Here if � ` v

:

B; a

:

w

Æ

hBi, where Æ � � then �;� . P

a?v

��!

�

�;� u v

:

A . Q for some A suh that B <

:

A.

� = (~

:

~

C)a!v: Here if rulesv
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� Suppose P

�

�! Q is inferred using (l-open), that is

(new b

:

B) P

0 (b

:

B)(~

:

~

C)a!v

���������! Q

beause P

0

(~

:

~

C)a!v

�����! Q.

� ` P implies �; b

:

B ` P

0

and the existene of of � u � also

ensures that of �u�; b

:

B. In short the (weaker) indutive hypothesis

holds of �;�; b

:

B . P

0

and therefore by indution we an obtain the

ation in ontext �;�; b

:

B.P

0

(~)a!v

���!

�

Q. An appliation of (-open)

gives the required �;� . P

(b)(~)a!v

�����!

�

Q

�

Note that in ations in ontext �;� . P

�

�!

�

�

0

; �

0

. Q the resulting

environments, �

0

; �

0

, are not in general determined by � and �. The

hange in the environment of the observed proess, the hange from � to

�

0

, is determined by the delared types of new names introdued by the

proess. For example onsider

P

1

= (new 

:

C

1

) a!
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s = (~)a!v � s

0

: Here � after

�

s is only de�ned if r

Æ

hAi 2 �(a) for some

Æ � �, in whih ase it is (� u v

:

A) after

�

s

0

.

Lemma 3.6. If �;� .P

s

�!

�

�

0

; �

0

.Q, where � is a single-level environ-

ment, then � after

�

s is de�ned and �

0

= � after

�

s.

Proof. By indution on the derivation of �;� . P

s

�!

�

�

0

; �

0

. Q. �

3.3 May testing

In this setion we give a haraterisation of the relation � .

�

P

�

�

may

Q.

Ations in ontext are generalised to (asynhronous) traes in ontext

as follows:

Definition 3.7 (Traes). Let �;� . P

s

=)

�

�

0

; �

0

. P

0

be the least

relation suh that:

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

s

=)

�

�

00

; �

00

. P

00

(tr-�)

�;� . P

�

=)

�

�;� . P

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

��s

=)

�

�

00

; �

00

. P

00

(tr-asyn)

� ` v

:

A

�;� u v

:

A u a

:

w

Æ

hAi . P j a!hvi

s

=)

�

�

00

; �

00

. P

00

�;� . P

a?v�s

===)

�

�

00

; �

00

. P

00

Æ � �

Note that there is some redundany here. The rule (tr-�), where � is an

input ation a?v, an atually be derived from (tr-asyn) and (tr-� ).

We now show how interations between a proess P and a �-level

observer T , that is a omputation from T j P , an be deomposed into a

trae in ontext from P and the omplementary sequene from T . It will

beome lear that it is suÆient to only onsider newfree observers, that

is observers whih ontain no ourrene of the binders (new a) .
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Theorem 3.8 (Trae Deomposition). Let �;�.P be a on�guration

and suppose T j P

�

�!

�

R for some newfree observer T suh that � `

�

T .

Then there exists a trae in ontext

�;� . P

s

=)

�

�

0

; �

0

. P

0

and a derivation T

s

=) T

0

, where R has the form (new ~

:

~

C) (T

0

j P

0

).

Proof. By indution on the derivation of T jP

�

�!

�

R. Consider the non-

trivial ase when this is of the form T jP

�

�!

�

�!

�

R. There are essentially

three ases:

� Output from T to P . In this ase we have T

a!v

��! T

1

; P

a?v

��! P

1

and

T

1

j P

1

�

�!

�

R.

� `

�

T means � ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B, and so we

may apply Lemma 3.5 to obtain the ation in ontext

�;� . P

a?v

��!

�

�;� u v

:

A . P

1

for some B <

:

A. Moreover the ompatibility of � and �uv

:

A follows

from that of � and �.

Subjet Redution implies that �
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Theorem 3.9 (Trae Composition). Suppose �;�.P

s

=)

�

�

0

; �

0

.P

0

and T

s

=) T

0

for some s. Then there exists a derivation T j P

�

�!

�

R,

where R has the form (new ~

:

~

C) (T

0

j P

0

).

Proof. By indution on s. �

Refering to the statement of this theorem note that Subjet Redution

ensures that �

0

` P

0

. However in general we do not have that �

0

`

�

T

0

,

even under the assumption � `

�

T .

Example 3.10. Let P; T be the proesses (new 

:

C) a!hi and a?(x

:

A

2

) x!hi

respetively and let �;� map a to the type fr

Æ

1

hA

1

i; r

Æ

2

hA

2

i; w

bot

hCig,

where A

1

; A

2

; C are the types r

bot

hi; w

bot

hi; fA

1

;A

2

g respetively; here

we assume Æ

i

� �. Then

� `

�

T

� ` P

�;� . P

()a!

���!

�

�; 

:

A

1

; �

0

. 0

T

a?

��! !hi

but �; 

:

A

1

6`

�

!hi.

The problem lies, again, with the use of multi-level types.

Lemma 3.11. Let � be a single-level environment. Suppose � `

�

T and

� after

�

s is de�ned. Then T

s

=) T

0

implies � after

�

s `

�

T

0

.

Proof. By indution on s. �

This Lemma may now be applied to the onditions of the Trae Composi-

tion Theorem, Theorem 3.9, to ensure when � is a single-level environment

we an also onlude that �

0

`

�

T

0

; here �

0

an only be � after

�

s.

We may now state a suÆient ondition to ensure two proesses are

related with respet to may testing.

Definition 3.12. For any on�guration C let Aseq

�

(C) = f s j C

s

=)

�

g

Then we write

� .

�

(� ` P )�

may

(�

0

` Q):

if for every appropriate �

0

, Aseq

�

(�;�

0

; � . P ) � Aseq

�

(�;�

0

; �

0

. Q)

Notie that in this de�nition we allow the testing environment, �, to be

inreased via �

0

; this enables tests to generate



22 Matthew Hennessy

Proposition 3.13. Suppose � ` P; Q, where � and � are ompatible.

Then � .

�

(� ` P )�

may

(�

0

` Q) implies � .

�

P

�

�

may

Q.

Proof.

Suppose � .

�

P

�

�

may

Q and P may T , where � ` T ; we must show

Qmay T .

Notie that the Trae Deomposition Theorem, Theorem 3.8, is only

valid for newfree proesses and T may in fat ontain ourrenes of

(new n) , intuitively generating new names with whih to test the pro-

esses. However, beause we only employ �nite tests, it is easy to show

that

T �

st

(new ~

:

~

C) T

0

for some newfree test T

0

, where �

st

is the strutural ongruene generated

by the equations:

P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P )

if u = v then (new a) P else Q �

st

(new a) (if u = v then P else Q)

if a 62 fn(Q); a 6= u; v

u?(x) (new a) P �

st

(new a) (u?(x)P ) if a 6= u

P jQ �

st

Q j P

(We have omitted two obvious symmetri rules for Cap and input, respe-

tively.) Moreover it is possible to show that �

st

is preserved by redution,

�

�!, form whih it follows that for any proess S, S may T if and only

S may T

0

. So it is suÆient to prove Qmay T

0

.

Sine P may T

0

we know there exists a omputation T

0

j P

�

�!

�

R,

where R an report a suess. For onveniene let �

0

denote �; ~

:

~

C, an

extension of �. Beause �

0

; � . P is a on�guration Theorem 3.8 an be

used to obtain the deomposition into a trae in ontext

�

0

; � . P

s

=)

�

�

0

; �

0

. P

0

and a sequene T

0

s

=) T

00

, where R has the form (new

~

d

:

~

D) (T

00

j P

0

).

Sine Aseq

�

(�

0

; �.P )
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the property that P may T (�; s; �) if and only if there is some � suh

that �;� . P

s

=). Note � will not be used in the de�nition and the tests

will only be de�ned for ertain ombinations of � and s.

For onveniene we only onsider traes in whih only simple identi�ers

are output, rather than vetors; that is the output ations are of the form

a!v or ()a!. The the t92he9j
230399 0 Tdhe

is is
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where A
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Definition 3.18 (Convergene). We say the on�guration C onverges,

written C +, if there is no in�nite sequene of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This relation is then parameterised to sequenes in ontext, seurity levels

and �nite multisets of input ations, by

": C +

I

�

if (C j I) +

s = (~)a!v � s

0

: C +

I

�

s if C + and whenever C

(~)a!v

===)

�

C

0

, C

0

+

I

�

s

0

.

s = a?v � s

0

: C +

I

�

s if, assuming C has the form �;� . P ,

� � a

+
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We use I

�

(C) to denote the set of input ations whih the on�guration

C an perform at level �, f a?v j C

a?v

��!

�

g. More generally we use I to

denote an arbitrarymulti-set of input ations,
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plying Lemma 3.11 it follows that �

m

`

�

a!hvi, whih by Lemma 3.5

is suÆient to ensure that �

m

; �

m

. P

m

a?v

��!

�

. This ontradits (2)

above.

Output: Here we have P

m

()a!hvi

����! and T

0

a?v

��!.

Again from Lemma 3.11 we know �

m

`

�

T

0

and therefore a! 2 O �

D; so Q

n

(~)a!w

����! for some value w. Beause of the struture of our

language, T

0

a?v

��! implies that T

0

a?w

��! is also true, and therefore we

have a ontradition of the maximality of C

n

.

This ompletes the proof, under the assumptions that �;� . P +

I

�

s and the omputation under srutiny, (y), is �nite. However these

assumptions an be taken are of in the standard manner, as in the

proof of Lemma 4.4.13 of [9℄.

�

As in the ase of may testing the proof of the onverse depends on the

ability to de�ne well-typed tests whih determine the relation �

�

. Here

there are two possible reasons why on�gurations may not be related; one

assoiated with onvergene, the other with a mismath of aeptane

sets. We treat eah in turn. As in the previous sub-setion to avoid

notational omplexity we only onsider simple output ations, where only

single names are transmitted. We also use some of the derived notation

developed in that sub-setion.

Tests for Convergene. We de�ne the terms T

C

(�; s; I; �) by indution

on s:

": Here T

C

(�; s; I; �) = (!!hi � !!hi) j I

a!v � s

0

: Here T

C

(�; s; I; �) is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T

C

(� u v

:

A; s

0

; I; �)

else 0

where r

Æ

hAi 2 �(a) for some Æ � �

()a! � s

0

: In this ase T

C

(�; s; I; �) is given by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T

C

(�; 

:

A; s

0

; I; �))fj

x

=jg

where again r

Æ

hAi 2 �(a) for some Æ � �

a?v � s

0

: Here T

C

(�; s; I; �) is only de�ned if � ` a

:

w

Æ

hAi; v

:

A for some
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Æ � �, in whih ase it is

a!hvi j T

C

(�; s

0

; �)

We leave the reader to hek the following:

Lemma 3.24. Suppose �;�.Q

s

=)

�

�

0

; �

0

.Q

0

, where (Q

0

jI) 6+, for some

I suh that (� after

�

s) allows

�

I. Then

� T

C

(�; s; I; �) is de�ned

� � `

�

T

C

(�; s; I; �)

� Q 6must T

C

(�; s; I; �).

Proof. By indution on s. �

Corollary 3.25. �.

�

P

�

�

must

Q and �;�.P +

I

�

s implies �;�.Q +

I

�

s.

Proof. Suppose, on the ontrary, that for some s, �;� . P +

I

�

s, while

�;� .Q

s

=)

�

�

0

; �

0

.Q, for some Q

0

suh that (Q

0

j I) 6+. By the previous

Lemma it is suÆient to show P must T

C

(�; s; I; �), whih an easily be

done by indution on s. �

Tests for Aeptane Sets. Let us �rst extend the prediate allows

�

to apply to output aeptane sets, in addition to sets of input ations.

We write �allows

�

O if, for eah a! 2 O, r

Æ

hAi 2 �(a) for some Æ � �, and

� ` v

:

A for some value v; note that this means � `

�

a!hvi.

We now de�ne terms T (�; s; O; I; �), where O is an output aeptane

set and I is a set of input ations, by indution on s. The indutive ases

are very similar to the orresponding ases in the de�nition of the tests

for onvergene.

": Here T (�; s; O; I; �) is only de�ned if � allows

�

O; I, in whih ase it is

Y

f a!hvi j a?v 2 I g j

Y

f a?(x

:

A

a

)!!hi j a! 2 O g:

Here the type A

a

is determined by the fat that � allows

�

O.

a!v � s

0

: Here the test is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T (� u v

:

A; s

0

; O; I; �)

else 0

where A is determined by r

Æ

hAi 2 �(a) for some Æ � �.
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()a! � s

0

: Here it is de�ned by

(new n) n!
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4 Non-Interferene Results

In this setion we reonsider the approah taken to non-interferene in

Setion 4 of [10℄. The essential idea is that if a proess is well-typed at a

given level � then its behaviour at that level is independent of proesses

\running at higher seurity levels"; or more generally \running at seurity

levels independent to �". A partiular formulation of suh a result was

given in Theorem 5.3 of [10℄:

Theorem 4.1. If � `

�

P;Q and � `

>

H;K, where H; K are �-free pro-

esses, then � .

�

P '

may

Q implies � .

�

P jH '

may

Q jK.

Here, beause of our more re�ned notions of well-typing, we an give o�er

a signi�ant improvement on this Theorem, and moreover the formulation

is atually easier.

Let us say that the seurity level Æ is independent of � if Æ 6� �. We

an ensure that a proess H is \running at a seurity level independent

to �" by demanding that � `

Æ

H , for some Æ independent of �. In fat we

will only require the weaker typing relation � `

wÆ

H . This ensures that all

the output ations of H are at a level independent of �, as an be dedued

from the following property:

Lemma 4.2. Suppose � `

wÆ

H. Then �;� .H

�
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The onsisteny requirement on types implies Æ

0

� �

0

, whih ontra-

dits Æ 6� �.

Output from P to H : Here the derivation takes the form

�;� . P jH

�

�!

�

�;� . (~

:

~

C)(P

0

jH

0

)

s

=)

�

where P

(~)a!v

���! P

0

and H

a?v

��! H

0

. So there exists a sequene s

C

,

assoiated with s, suh that

�;� ; ~

:

~

C . P

0

jH

0 s

C

=)

�

(�)

with the property that for for any R suh that �;� ; ~

:

~

C . R

s

C

=)

�

it

follows that �;� . (~

:

~

C)R

s

=)

�

.

Applying indution to (�) we obtain

�;� ; ~

:

~

C . P

0 s

C

=)

�

Note that this is possible sine Subjet Redution gives

�; ~

:

~

C `

r�

P

0

; � u v

:

A `

wÆ

H

0

where A is a type suh that �; ~

:

~

C <

:

�u v

:

A. (In fat A is the type

at whih v is sent by P .)

It follows that �;�; ~

:

~

C . P

0

j a!hvi

s

C

=)

�

and therefore

�;� . (new ~

:

~

C) (P

0

j a!hvi)

s

=)

�

:

But by Lemma 2.5 we know

P �

st

(new ~

:

~

C) (P

0

j a!hvi)

and the result follows.

�

We end the paper with a non-interferene result with respet to must

testing. Note that Theorem 4.3 is no longer true when

�

�

may

is replaed

bya

a
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The presene or absene of H determines whether or not there is read on-

tention on the hannel n, whih in turn inuenes the deadlok apabilities

of P with respet to the hannel a.

Here the problem is the type of the hannel n; it may be read at both

level bot and top. A not unreasonable restrition would be to require that

the read apability of hannels be on�ned to a partiular seurity level,

using single-level types. This would not rule out inter-level ommunia-

tion, but simply ontrol it more tightly.

Theorem 4.5 (Non-Interferene 2). Let � and � be ompatible single-

level environments and suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite proesses H; K suh that � `

wÆ

H; K for some Æ independent

of �.

Note that we must restrit our attention to �nite H and K sine must

testing is sensitive to divergene; if H is a divergent term then we ould

not expet � .

�

P j 0 '

must

P jH to hold when P is a onvergent term.

This problem is avoided by restriting attention to �nite terms,whih an

never diverge.

The remainder of the setion is devoted to the proof of this �nal result

of the paper. Throughout we will assume � and � are ompatible single-

level environments, � `

r�

P , � `

wÆ

H for some Æ independent of �, and

moreover that H is a �nite proess.

Lemma 4.6. For every s, �;� . P +uld16 T5.159 0.12 Tfmp�
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� The empty derivation.

Here A = R

�

(�;� . P ). This means that P 6

�

�! but we may have

P j H

�

�! either beause H

�

�! or there may be a write up from P

to H . But beause H is syntatially �nite and P + we know there is

some P

0

jH

0

suh that P jH

�

�!

�

P

0

jH

0

6

�

�!. Let O be O

�

(�;�.P

0

jH

0

).

Sine (I)\A = ; we know that O 2 O

�

I

(�;�.P jH; s) and beause

P

0

is obtained from P by write-ups it follows that O � A.

� The derivation has the form �;� . P

()a!v

���!

�

�

0

; �

0

. P

0

s

=)

�

D.

By Subjet Redution we know �

0

`

r�

P

0

and therefore we may apply

indution to obtain O 2 O

�

I

(�;� . P

0

jH; s) with the required proper-

ties. The result now follows sine O

�

I

(�;� . P

0

jH; s) � O

�

I

(�;� . P j

H; ()a!v � s)

� The remaining ases are similar.

�

We also have the onverse.

Proposition 4.8. Suppose A 2 A

�

(�;�.P jH; s) and, as in the previous

Proposition, I is a set of inputs suh that (I) \ A = ; and (� after

�

s) allows

�

I. Then there exists some O 2 O

�

I

(�;� . P; s) suh that O �

(I) � A.

Proof. Again by indution on the derivation

�;� . P jH

s

=)

�

D; where A = R

�

(D)

As an example we examine the ase

�;� . P jH

�

�! D

0 s

=)

�

D;

where the initial � onsists of a ommuniation between P and H . This

must be a write-up from P to H ; so D

0

has the form �;� . (~

:

~

C)P

0

j

H

0

, where P

(~

:

~

C)a!v

�����! P

0

and H

a?v

��! H

0

. We know P has the form

(~

:

~

C)(a!hvi j P

0

), but more importantly that r

Æ

hAi 2 �(a) for some Æ

independent from � (y). What this means is there an an be no om-

muniation between a!hvi and any Q suh that � `

r�

Q.

Now the derivation �;� . (~

:

~

C)(P

0

jH

0

)

s

=)

�

D an be transformed

into �;�; ~

:

~

C . P

0

jH

0

s

C

=)

�

E , where R

�

(E) = R

�

(D). Moreover we an

apply indution to this derivation, to obtain O 2 O

�

I

(�;�; ~

:

~

C . P

0

; s

C

)

suh that O � (I) � A.

We an use (y) to prove O is also in O

�

I

(�;�; ~

:

~

C .a!hai jP

0

; s

C

). The

result now follows sine

O

�

I

(�;�; ~

:

~

C . a!hai j P

0

; s

C

) � O

�

I

(�;�; ~

:

~

C . (~

:

~

C)(a!hai j P

0

); s):
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�

Corollary 4.9. (Theorem 4.5) suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite proesses H; K suh that � `

wÆ

H; K for some Æ independent

of �.

Proof. It is suÆient to prove

(�;�

0

);�.P �

�

(�;�

0

);�.P jH and (�;�

0

);�.P jH �

�

(�;�

0

);�.P:

These follow from the two previous Propositions and Lemma 4.6. �

5 Conlusions and Related Work

This paper is a diret ontinuation of the researh reported in [10℄. There

we foused on the general topi of seurity types, showing that resoure a-

ess ontrol ould be enfored using a typing system and information ow

ontrol ould be obtained by a restrition to the set of types employed.

The import of Subjet Redution was emphasised by developing a Type

Safety Theorem, whih in turn required a version of the language in whih

proesses were tagged with their seurity levels. Here we onentrated on

types for information ow, alling the resulting language the seurity �-

alulus. The �rst main result onsists of alternative haraterisations of

may and must testing for this language. These uses a novel labelled tran-

sition system, whih reords the
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properties have been shown to be expressible in terms of non-interferene

and it would be interesting to see whether these an be enfored by typing

onstraints using a type system suh as ours. This would involve extending

our
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