

Section 3, where it is also shown that simple GSOS systems associate �nite process graphs with

each term. Section 4 is devoted to a possible generalization of this result to simple GSOS systems

with recursive de�nitions. The note ends with some remarks on an in�nitary version of GSOS

systems and a discussion of related literature.

2 Preliminaries

Let Var be a denumerable set of variables ranged over by x; y. A signature � consists of a set of

operation symbols, disjoint from Var, together with a function arity that assigns a natural number

to each operation symbol. The set (�) of terms over � is the least set such that

� Each x 2 Var is a term.

� If f is an operation symbol of arity l, and P

1

; : : : ; P

l

are terms, then f(P

1

; : : : ; P

l

) is a term.

I shall use P;Q; : : : to range over terms and the symbol � for the relation of syntactic equality on

terms. T(�) is the set of closed terms over �, i.e., terms that do not contain variables. Constants,

i.e. terms of the form f(), will be abbreviated as f .

A �-context C[~x] is a term in which at most the variables ~x appear. C[

~

P] is C[~x] with x

i

replaced by P

i

wherever it occurs.

Besides terms we have actions , elements of some given �nite set Act, which is ranged over by

a; b; c. A positive transition formula is a triple of two terms and an action, written P

a

! P

0

. A

negative transition formula is a pair of a term and an action, written P

a

9. In general, the terms

in the transition formula will contain variables.

De�nition 2.1 (GSOS Rules and GSOS Systems [7]) Suppose � is a signature. A GSOS

rule � over � is an inference rule of the form:

S

l

i=1

n

x

i

a

ij

! y

ij

j1 � j � m

i

o

[

S

l

i=1

n

x

i

b

ik

9 j1 � k � n

i

o

f(x

1

; : : : ; x

l

)

c

! C[~x; ~y]

(1)

where all the variables are distinct, m

i

; n

i

� 0, f is an operation symbol from � with arity l, C[~x; ~y]

is a �-context, and the a

ij

, b

ik

, and c are actions in Act. In the above rule, f is the principal

operation of the rule and C[~x; ~y] is its target.

A GSOS system is a pair G = (�

G

; R

G

), where �

G

is a �nite signature and R

G

is a �nite set of

GSOS rules over �

G

.

GSOS systems have been introduced and studied in depth in [7, 6]. The interested reader is

referred to those references for much more on them. Intuitively, a GSOS system gives a language,

whose constructs are the operations in the signature �

G

, together with a Plotkin-style operational

semantics [24] for it de�ned by the set of conditional rules R

G

. As usual, the operational semantics

for the closed terms over �

G

will be given in terms of the notion of labelled transition system.

De�nition 2.2 (Labelled Transition Systems) Let A be a set of labels. A labelled transition

system (lts) is a pair (S;!), where S is a set of states and !� S�A�S is the transition relation.

As usual, I shall write s

a

! t in lieu of (s; a; t) 2!, and s ! t when the label associated with the

transition is immaterial. A state t is reachable from state s if there exist states s

0

; : : : ; s

n

and labels

a

1

; : : : ; a

n

such that

s = s

0

a

1

! s

2

a

2

! � � �

a

n

! s

n

= t

2

The set of states which are reachable from s, also known as the set of derivatives of s, will be

denoted by der(s).

A process graph is a triple (r; S;!), where (S;!) is an LTS, r 2 S is the root, and each state

in S is reachable from r. If (S;!) is an lts and s 2 S then graph(s; (S;!)) is the process graph

obtained by taking s as the root and restricting (S;!) to the part reachable from s. I shall write

graph(s) for graph(s; (S;!)) whenever the underlying lts (S;!) is understood from the context.

An lts (S;!) is �nite i� S and ! are �nite sets. A process graph graph(s; (S;!)) is �nite if the

restriction of (S;!) to

3 Finite Labelled Transition Systems from GSOS Rules

In this section, I shall show how to impose syntactic restrictions on the format of rules in a GSOS

system G which ensure that graph(P) is a �nite process graph for each P 2 T(�

2. C[~x; ~y] � g(z

1

; : : : ; z

n

) for some g 2 �

G

and z

1

; : : : ; z

n

in ~x; ~y. In this case, R �

g(z

1

; : : : ; z

n

)� and, as !

G

; � j= H , it follows that

8h 2 f1; : : : ; ng9j 2 f1; : : : ; lg : �(z

h

) 2 der(P

j

) (2)

Let �(z

h

) � R

h

for all h 2 f1; : : : ; ng. Then R � g(R

1

; : : : ; R

n

) !

?

G

Q by a shorter

derivation. 4ll

The above theorem gives a purely syntactic way of checking whether the process graphs giving

semantics to programs

where 0 denotes a stopped process. The operation f is guarding, but not hereditarily so, as g is

not.

In order to add a facility for recursive de�nitions to simple GSOS systems, I shall assume a

given, �nite set of constant function symbols N , whose elements will be referred to as process

names. I shall use X; Y; : : : to range over N . Without loss of generality, I shall assume that the

constant symbols in N are fresh

Proof: Let Q 2 der(f(X

1

; : : : ; X

l

)). This means that f(X

1

; : : : ; X

l

)!

?

G

�

Q. I shall now show that

Q 2 fg(Y

1

; : : : ; Y

n

) j g 2 �

G

^ Y

1

; : : : ; Y

n

2 Ng [N

by induction on the length of the derivation f(X

1

; : : : ; X

l

)!

?

G

�

Q. The base case of the induction

is trivially seen to hold.

For the inductive step, assume that f(X

1

; : : : ; X

l

) !

G

�

P !

?

G

�

Q, for some P 2 T(�

�

set. Consequently, the results presented in this note cannot be applied directly to the full versions

of these calculi. I shall now briey sketch a possible extension of the results presented in Section 3

to a class of \in�nitary" GSOS systems. For the purpose of this section, I assume that the set of

actions Act is countable

1

.

De�nition 5.1 An in�nitary GSOS system is a pair G = (�

G

; R

G

), where �

G

is a countable

signature and R

G

is a countable set of GSOS rules over �

G

.

In the presence of a possibly in�nite action set and signature, care must be taken to preserve

the basic sanity properties of GSOS systems [7, 6] which have bearing on the aim of this note.

For instance, processes which give rise to in�nitely branching process graphs can now be easily

speci�ed, and should be ruled out. An example of such a process is the constant all-actions with

rules (one such rule for each a 2 Act):

all-actions

a

! all-actions

Proof: The proof of the �rst part of this proposition follows the standard lines of that of Lemma 2.6.

To prove the second statement, it is su�cient to show that, for bounded in�nitary GSOS systems,

the sets

n

a 2 Act j 9Q 2 T(�

G

) : P

a

! Q

o

and

n

Q j P

a

! Q

o

are �nite, for all P 2 T(�

G

) and

a 2 Act. This can be easily shown by structural induction on P . 2

In general, the condition of boundedness is not enough to ensure that the process graph associ-

ated with each term in a simple in�nitary GSOS system is �nite. Consider, for example, a simple

in�nitary GSOS system with constants c

i

, i 2 !, and rules

c

i

a

! c

i+1

Such a GSOS system is obviously bounded, but der(c

i

) is in�nite for all i 2 !. This pathological

behaviour is due to the fact that the operator dependency relation �

G

associated with

terms (see [19, De�nition 4]). This is similar in spirit to the technique proposed in [2, Section 6] to

show that linear GSOS systems, which are a generalization of de Simone systems, are syntactically

well-founded. The notion of simple rule, albeit less powerful than term-rewriting techniques based

on simpli�cation orderings, o�ers a much simpler syntactic criteria which guarantees the �niteness

of the semantics of terms. It is also a criteria which applies well to general GSOS rules; for instance,

it can be used to show that some operations which use negative premises, like the priority operation

speci�ed by (4), generate �nite process graphs from �nite ones.

Specialized techniques which can be used to show that certain processes give rise to �nite

process graphs have been proposed for CCS and related languages. The interested reader is invited

to consult [10] and the references therein. Not surprisingly, these specialized methods tend to be

more powerful than general syntactic ones as they rely on language-dependent semantic information.

For instance, a method to check the �niteness of a large set of CCS processes based on abstract

interpretation techniques [1] has been proposed in [10]. However, the language dependency of these

techniques, which is the source of their power, makes it di�cult to generalize them to classes of

languages.

Acknowledgements: Many thanks to Bard Bloom for his useful comments on this note, and to

Ilaria Castellani and Frits Vaandrager for pointing out the reference [19].

References

[1] S. Abramsky and C. Hankin. Abstract interpretation of declarative languages. Ellis Horwood,

1987.

[2] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations. Report CS-

R9218, CWI, Amsterdam, June 1992. Submitted for publication to Information and Compu-

tation.

[3] D. Austry and G. Boudol. Alg�ebre de processus et synchronisations. Theoretical Computer

Science, 30(1):91{131, 1984.

[4] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations for an interrupt

[25] R. de Simone. Higher-level synchronising devices

