
On asynchrony in name-passing calculi

�

Massimo Merro Davide Sangiorgi

COGS, University of Sussex, UK INRIA, Sophia-Antipolis, France

October 26, 2001

Abstract

The asynchronous �-calculus is considered the basis of experimental programming lan-

guages (or pro998.66(er)]erimenos398 0 Td
(15ogramming0 Td
[(exp)-1999g)Tj
57.7199 0 Td
(lan-)Tj
-357.70.6 0) 0 Td
(5Sophia-An)3likli(yCO.8 0 Td1(5Sophia-An)3Hol)]TJ
51(wl)]T
(i(evl)]TJ
51(er02 0 T8409203j
10.2 a.12 T12.1an-)Tj
-35a 10.9168.5d
(guages)Tj
3closerTd
[(as1Sophia-An)3inseri2)]TJ
3(ection02 0 T87s1Sophia-An8 0 s Td
(24.1an-)Tj
-357.70.6 0 0 Td2or)Tj
15.are 0 Td
[�3an-

guarded choice [38]), it seems fair to say that the restriction to asynchronous contexts does not

allows us to gain much.

By contrast, asynchrony has strong semantic consequences under simpli�cations (a) and (b).

Consider the following laws which are valid (under the speci�ed conditions) in L�, but are false

in �

a

and in �-calculus:

ab = (�c)(ac j !c(x). bx) (1)

(�a)(!a(x).R j P j Q) = (�a)(!a(x).R j P) j (�a)(!a(x).R j Q) (2)

(�a)(!a(x).R j C[ab]) = (�a)(!a(x).R j C[Rf

b

=xg]) (3)

(�c)(

Proof techniques for L� can be exploited to reason about languages such as Pict, Join, and

TyCO, either by directly adapting the techniques to these languages, or by means of encodings

into L�. The theory of L� (for instance, its algebraic properties and labelled bisimulations) is also

useful in calculi where the usage of some names goes beyond the syntax of L�. For instance, there

could be a distinct set of synchronous names, or names that can be tested for identity (see, for

instance, [30]). A type system could be used to distinguish between \L� names" and the other

names, and the theory of L� can then be applied to the formers.

For simplicity we develop the theory for a monadic calculus (where exactly one name may be

transmitted); the generalisation to the polyadic version (where tuple of names may be transmitted)

is straightforward.

1.1 Related work

Calculi similar to Localised � are discussed by Honda and Tokoro [22], Amadio [2], Boreale [7],

and Yoshida [62]. A number of characterisations of barbed congruence on asynchronous mobile

processes exist [3, 8, 2]. However, in the labelled bisimilarities used, matching transitions of

processes have the same labels, therefore laws like (1�5) do not hold.

Other studies on barbed congruence, or similar context-based bisimulations, for mobile pro-

cesses have been conducted, for instance by Honda and Yoshida [24, 61] Kobayashi, Pierce, and

Turner [27], Hennessy and Riely [19] (and, for a coordination language, by Busi, Gorrieri, and Za-

vattaro [12]). Boreale and Sangiorgi [9] have studied barbed congruence in synchronous �-calculus

with capability types and no matching, where L� can be treated as a special case. Our character-

isations are simpler than those in [9], but the latter are more general, in that they can be applied

to several �-calculus languages (although the extension to asynchronous languages is not straight-

forward). The technical approaches are di�erent: in [9] bisimilarities have a type environment (in

fact, closures) whereas our bisimilarities are directly de�ned on processes.

By the time the writing of this paper has been completed, the theory of L� has already been

used in some works. In [29], the �rst author gives an encoding of polyadic L� into monadic L�.

Unlike Milner's encoding of polyadic � into monadic � [31], the encoding in [29] is fully-abstract

with respect to barbed congruence. In [54], the second author gives a fully-abstract encoding of

higher-order L� (where processes can be transmitted) into L�. The theory of L� allows proofs

simpler than those of analogous results for other �-calculi [46, 49]. Finally, in [30] L� is used to

give a translational semantics of (an appropriate abstraction of) Cardelli's distributed object-based

programming language Obliq [13]. The theory of L� (precisely a typed variant of Lemma 5.17) is

used to prove the correctness of object migration.

In Join and Blue calculus, polymorphic type systems �a la ML have been introduced [17, 14].

In both cases, the constraint on the output capability of names is crucial. We believe that similar

polymorphic type systems can be de�ned in L�.

1.2 Outline

In Section 2 we give syntax and operational semantics of L�. In Section 3 we recall some common

bisimulation-based behavioural equivalences for �-calculi. In Section 4 we present some special

processes, the link processes, which are important in the theory of L�. In Section 5 we give the

�rst proof technique for barbed congruence. In Section 6 we give the second proof technique for

barbed congruence. In Section 7 we prove that these two proof techniques completely describe

barbed congruence. In Section 8 we enhance the second proof technique with a new form of

up-to proof technique. Section 9 is entirely devoted to applications: in subsection 9.1 we use

link processes to express name substitutions; in Subsection 9.3 we prove that the delayed input

(a form of non-blocking input pre�xing) is derivable in L�, and present some of its algebraic

properties. In Subsection 9.2 we prove a sharpened form of Milner's replication theorems [31]. In

Subsection 9.4 we give an optimisation of the encoding of call-by-name �-calculus and, exploiting

delayed input, we derive an encoding of strong call-by-name. In Subsection 9.5 we prove some laws

for Fournet and Gonthier's Join-calculus [15]. In Subsection 9.6 we prove some non-full abstraction

5

inp:

In �-calculi, barbed congruence coincides with the closure under substitutions of early bisimi-

larity [46, 3]. In asynchronous calculi without matching, like L�, early bisimilarity is a congruence

and it coincides with its simpler ground variant [20, 48], which di�er from the early one in that

there is no universal quanti�cation in the input clause.

De�nition 3.3 A symmetric relation S on �-terms is an o� -bisimulation if P S Q, P

�

��!P

0

, �

is not an input and bn(�)\ fn(Q) = ;, implies that there exists Q

0

such that Q

b�

==)Q

0

and P

0

S Q

0

.

De�nition 3.4 (Ground bisimilarities)

� Synchronous ground bisimulation is the largest o� -bisimulation S on processes such that

P S Q and P

a(b)

����!P

0

, with b 62 fn(Q), implies that there exists Q

0

such that Q

a(b)

====

(a) either P

a(b)

����!P

0

and P

0

S Q

0

(b) or P

�̂

��!P

0

and (P j ab) S Q

0

.

We write P .

a

Q, if P S Q for some asynchronous ground expansion S.

4 The link processes

The theory of L� is based on special processes called links which behave as name bu�ers receiv-

ing names at one end-point and retransmitting them at the other end-point (in the �-calculus

literature, links are sometimes called forwarders [24] or wires [56]).

De�nition 4.1 (Static link) Given any two names a and b, we call static link the process below:

a . b

def

= !a(x). bx.

We sometimes use a more sophisticated form of link a! b, which does not perform free outputs:

the name sent at b is not x, but a link to x (this is the de�nition of links in calculi where all outputs

emit private names [50]).

De�nition 4.2 (Dynamic link) Given two names a and b, we call dynamic link the process

de�ned by the following recursive de�nition:

a! b

def

= !a(x). (�c)(bc j c! x).

Being recursively de�ned, the process a! b is not in L�. However, there exists a process in

L� which is synchronous bisimilar to it. In the following we explain how this process can

(a) either Q

a(b)

====)Q

0

and P

0

S Q

0

(b) or Q =) Q

0

and P

0

S (Q

0

j [[ab]]).

Processes P and Q are �

a

-bisimilar, written P �

a

Q, if P S Q for some �

a

-bisimulation S.

Relation �

a

is designed to be used on L�-processes and therefore its de�nition does not contain

clauses for free output actions. In order to prove that �

a

is a congruence relation over L� we

adapt the up-to expansion proof technique of [55].

De�nition 5.7 (�

a

-bisimulation up to & and �) A symmetric relation S is a �

a

-bisimula-

tion up to & and � if whenever P S Q the following holds:

1. If P

�

��!P

0

, then there exists Q

0

such that Q =) Q

0

and P

0

&S � Q

0

.

2. If P

a(b)

����!P

0

, b 62 fn(Q), then there exists Q

0

such that Q

a(b)

====)Q

0

and P

0

&S � Q

0

.

3. If P

ab

���!P

0

, b 62 fn(P;Q), then there exists Q

0

such that:

(a) either Q

ab

===)Q

0

and P

0

&S � Q

0

(b) or Q =) Q

0

and P

0

&S � (Q

0

j [[ab]]).

Lemma 5.8 If S is a �

a

-bisimulation up to & and � then S ��

a

.

Proof: The proof is analogous to that in [55]. If S is a �

a

-bisimulation up to & and �, then one

shows that the relation �S� is a �

a

-bisimulation. This follows from the transitivity of � and the

fact that � is preserved by parallel composition (The latter result is necessary to deal with clause

(3b) of De�nition 5.6). Finally, since S � �S � � �

a

, we can conclude. �

In the sequel, we often use a �

a

-bisimulation up to � proof technique. The soundness of this

technique follows from Lemma 5.8 and the fact that � is contained in & (and therefore also in �).

The following lemma gives us some information about the structure of the L�-processes which

may perform an output action. Part 2 of Lemma 5.9 will be needed to prove that �

a

is preserved

by parallel composition.

Lemma 5.9 Let P be an L�-process.

1. If P

a(c)

����!P

1

then P � (�ez)((�c)(ac j c! b) j P

2

) and P

1

� (�ez)(c! b j P

2

) for some ez, b

and P

2

such that fa; cg \ ez = ; and c 62 fn(P

2

).

2. If P

a(c)

����!P

1

then P � (�c)([[ac]] j P

1

).

Proof:

1. By transition induction.

2. By part 1 P � (�ez)((�c)(ac j c! b) j P

2

) and P

1

� (�ez)(c! b j P

2

) for some ez, b and

P

2

such that fa; cg \ ez = ; and c 62 fn(P

2

). Picking some fresh name d we have, using

proposition 4.3(2):

P � (�ez)((�d)(ad j d! b) j P

2

)

� (�ez)((�d)(ad j (�c)(d! c j c! b)) j P

2

)

� (�c)((�d)(ad j d! c) j (�ez)(c! b j P

2

))

� (�c)([[ac

Lemma 5.10 Let P and Q be two L�-processes such that P �

a

Q. Then:

1. (�a)P �

a

(�a)Q

2. P j R �

a

Q j R, for all

(�a

2. We prove that the relation S de�ned below

f(P

1

j !a(x).Q

1

; P

2

j !a(x).Q

2

) : P

1

; P

2; P

2; P

2; P

free-out:

P

ab

���!P

0

p 62 fn(P)

P

a(p)

7�! (p . b j P

0

)

bound-out:

P

a(b)

����!P

0

p 62 fn(P)

P

a(p)

7�! (�b)(p . b j P

0

)

sync:

P

�

��!P

0

P

�

7�!P

0

input:

P

a(b)

(a) either Q

ad

===)Q

0

and 9 p 62 fn(P;Q) such that (p . b j P

0

) S (p . d j Q

0

)

(b) or Q

a(c)

7 Two

R(n;L) =

4.

9 Applications of thethe

9.2 The replication theorems

The replication theorems [31] express useful distributivity properties of private replicated processes.

The assertions of the theorems can be read thus: A passive resource that is shared among a certain

number of clients can be made private to each of them.

Theorem 9.3 (Standard replication theorems) Assume that name a occurs free in processes

P , Q and R only in output subject position. Then:

1. (�a)

�

!a(x).R j P j Q

�

� (�x)(!a(x).R j P) j (�a)(!a(x).R j Q).

2. (�a)(!a(x).R j !P) � !(�a)(!a(x).R j P).

The side condition in the theorems prevents the restricted name a from being exported. As a

consequence, the theorem cannot be used in situations where the set of clients of the resource

a(x).R may change dynamically. To see why this side condition is necessary, take:

P

1

def

= (�a)(!a(x).R j ba j Q)

P

2

def

= (�a)(!a(x).R j ba) j (�a)(!a(x).R j Q)

These processes are in general not equivalent in �-calculus. Intuitively, the environment external

to P

1

can receive a along b and then use it in input position to interfere with an attempt by Q

to activate a copy of R. This is not possible in P

2

, where Q has its own private access to R. The

di�erence between P

1

and P

2

can be observed in a context that receives a and then uses it in

input; in this way, the context may steal messages that were supposed to reach the resource.

Pierce and Sangiorgi [43] have shown that the side condition can be relaxed using the type

system with input/output capabilities, and requiring that the processes R, P and Q only possess

the output capability on a. The same result is proved in [52] by previously translating processes

(by means of an encoding very close to our [[�]]) and then proving that the image are bisimilar.

In both cases the sharpened replication theorems are shown valid with respect to (typed) barbed

congruence by proving a few barbed bisimilarities. Here we propose easier proofs of the sharpened

replication theorems without using typed bisimulations. While the results in [43, 52] are for the

(standard) �-calculus, our results only applyin of eachof [[�name a edthethe transicted only outputapply with

bisimilar.�aiesrce

�

, by we can.�nly

theoremshave of [31y

is tox

d-in:

a(b)P

a(b)

����!P

s-com:

P

ac

���!P

0

a(b)P

�

��!(�b)(P

0

f

c

=bg)

p-in:

P

�

��!P

0

b 62n(�) a 62bn(�)

a(b)P

�

��! a(b)P

0

s-cls:

P

�

c

ac

����!P

0

b 62 n(�

c

ac)

a(b)P

�

��!�

c

(P

0

f

c

=bg)

o-�:

P

�

��!P

0

[�=ac _ �=c(b)ab] a 6= c

(�c)P

(�c)�

����!P

0

o-in:

P

ab

���!P

0

b 6= a

c(b)P

c(b)ab

����!P

0

cls:

P

�

c

ac

����!P

0

Q

a(b)

����!Q

0

bn(�

c

) \ fn(Q)=

fjP

1

j P

2

jg

def

= fjP

1

jg j fjP

2

jg fj(�a)P jg

def

= (�a)fjP jg fjab jg

def

= ab

fja(b).P jg

def

= a(b). fjP jg fj !a(b).P jg

def

= !a(b). fjP jg fj0 jg

def

= 0

fja(b)P jg

def

= (�b)(a(b

0

). b . b

0

j fjP jg)

Table 5: The encoding fj � jg

between processes P and fjP jg, up to some notion of expansion. As we will argue in Remark 9.11,

such an operational correspondence is not easy to prove. Thus, for convenience, we de�ne an

auxiliary encoding f[[�]]g as the composition of the encodings fj � jg and [[�]] (of Section 5). Precisely,

if P is a DL�-process

f[[P]]g

def

= [[fjP jg]].

We prove that the encoding f[[�]]g satis�es an operational correspondence up to <

a

, where 4

a

denotes the expansion variant of �

a

(De�nition 5.6) in the same way as .

a

denotes the expansion

variant of �

a

(see De�nition 3.5). This operational correspondence, together with Theorem 5.3,

allows us to prove the soundness of fj � jg. Then, by exploiting the inclusion L� � DL� we prove

the completeness of fj � jg.

For proving the operational correspondence of f[[�]]g we need to know that 4

a

is a precongruence

in L� (simply adapt Corollary 5.13). We also need the following technical lemma.

Lemma 9.5 Given an L�-process P and a name a it holds that

(�a)(a! a j [[P]]) <

a

(�a)[[P]].

Proof: We have a! a <

a

0. Then we can conclude because <

a

is a precongruence. �

Lemma 9.6 (Operational correspondence of f[[�]]g) Let P be a process in DL�.

1. Suppose that P

�

��!P

0

. Then we have:

(a) if � = a(b) then f[[P]]g

a(b

0

)

����! & f[[P

0

]]gf

b

0

=bg and b

0

62 fn(P)

(b) if � = ab then f[[P]]g

(�c)ac

������! <

a

(c! b j f[[P

0

]]g), with c 62 fn(P)

(c) if � = (�b)ab then f[[P]]g

(�c)ac

������! <

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P)

(d) if �=d(b)ab then f[[P]]g

(�c)ac

������!<

a

(�b)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; c

(b) if � = (�c)ac then:

i. either P

ab

���!P

0

and P

1

<

a

(c! b j f[[P

0

]]g), with c 62 fn(P)

ii. or P

(�b)ab

������!P

0

and P

1

<

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P)

iii. or P

d(b)ab

�����!P

0

and P

1

<

a

(�b)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

iv. or P

(�d)d(b)ab

����! P

0

and P

1

<

a

(�b)(�d)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

(c) if � = � then P

�

��!P

0

with P

1

<

a

f[[P

0

]]g.

Proof: By transition induction. The proof relies on Proposition 4.3(2), Lemma 5.2, and Lemma 9.5.

Remark 9.11 In order to clarify the usefulness of the auxiliary encoding f[[�]]g, notice that if one

wanted to prove the operational correspondence of fj � jg (instead of f[[�]]g), then Proposition 4.3(2)

and Lemma 9.5 would not be necessary anymore. By contrast, an expansion variant of Proposi-

tion 9.1 would be necessary. The proof of a such a result would require an expansion variant of

Theorem 5.14 (or Corollary 5.15), which, as already pointed out in Remark 5.16, does not hold.

Using fj � jg and the theory of L� we can prove laws for delayed input like:

a(b)(P j Q) = (a(b)P) j Q if b 62 fn(Q) (9)

a(b)c(d)P = c(d)a(b)P if c 6= b and d 6= a (10)

(�a)(a(x)(ax j P)) = (�x)P if a 62 fn(P) (11)

Laws 9 and 10 are similar to structural rules for restriction. Similar laws have been proposed

in [11]. Law 11 transforms a delayed input binder into a restriction binder (it might be interesting

to examine delayed input from within action calculi [34]; for instance, law 11 is reminiscent of the

de�nition of restriction in reexive action calculi [35]).

9.4 Encodings of the �-calculus

In this example, we use polyadicity, which is straightforward to accommodate in the theory of L�.

We write ahb

1

: : : b

n

i for polyadic outputs and a(x

1

; : : : x

n

).P for polyadic inputs. Below, we give

Milner's encoding of call-by-name �-calculus into �-calculus (more precisely, the variant in [39]).

(j �x.M j)

p

def

= (�v)(phvi j v(x; q). (jM j)

q

)

(j x j)

p

def

= xhpi

(jMN j)

p

def

= (�q)

�

(jM j)

q

j q(v). (�x)(vhx; pi j !x(r). (j N j)

r

)

�

This is also an encoding into (polyadic) L�. By applying Proposition 9.1, we can prove the

following optimisation of the de�nition of application in the case when the argument is a variable

(a tail-call-like optimisation):

(jMy j)

p

def

= (�q)

�

(jM j)

q

j q(v). vhy; pi

�

We can also exploit the delayed input operator, that is a derived operator in L�, to get an

encoding of the strong call-by-name strategy, where reductions can also occur underneath an

abstraction (i.e., the Xi

hjahbi ji

def

= ab hjP j Q ji

def

= hjP ji j hjQ ji

hjdef ahxi jbhyi=P

1

in P

2

ji

def

= (�ab)(!a(x). b(y). hjP

1

ji j hjP

2

ji)

Table 6: Mapping of the Join calculus into L�

9.5 Some properties of the Join calculus

We apply the theory of L� to prove some laws in Fournet and Gonthier's Join calculus [15], a

calculus for distributed and concurrent programming.

The Join calculus is an o�-spring of the asynchronous �-calculus speci�cally designed to facil-

itate distributed implementations of channels mechanisms. The syntax of the (core) Join calculus

is given by the following grammar:

P ::= ahbi j P

1

j P

2

j def ahxi jbhyi=P

1

in P

2

.

The particle ahbi denotes the asynchronous output of name b at channel a. P

1

j P

2

denotes

two processes P

1

and P

2

running in parallel. The construct def ahxi jbhyi=P

1

in P

2

is a sort of

amalgamation of the operators of replication, parallel composition, and restriction, which allows

to model the joint reception of values from di�erent channels.

Free names and bound names of a process P , are

have to add a layer of \�rewalls" to the encoding. We conjecture that the above encoding is fully-

abstract with respect to barbed congruence as an encoding of Join into L� (a similar conjecture

is made by Fournet and Gonthier [15]). It is easy to prove soundness, and this su�ces for using

In [7],

4. If P

a(b)

����!P

0

, by Lemma 5.1, P

1

exists such that [[P]]

a(c)

P

(DISTR) Lfahb

4. If M

�

N then (jM j) =)� (jN j).

5. If

A Proofs

A.1 Proofs of Lemmas 5.10 and 5.12

For the sake of clarity we restate the result as follows.

Lemma A.1 Let P and Q be two L�-processes such that P �

a

Q. Then:

1. (�a)P �

a

(�a)Q

2. P j R �

a

Q j R, for all L�-process R

3. a(x).P �

a

a(x).Q

4. !a(x).P �

a

!a(x).Q.

Proof: 1. It su�ces to show that the relation

S= f((�a)P ; (�a)Q) : P;Q 2 L� and P �

a

Qg

is a �

a

-bisimulation up-to structural congruence. The proof is easy because the output ac-

tions performed by an L�-process are always bound. We work up to structural congruence

when dealing with the asynchronous clause for input.

2. We prove that the relation

S = f((�~a)(P j R); (�~a)(Q j R)) 1 0.12 Tf
6.48008 0 Td
(a)Tj
/R210 0.12 Tf
5.28008 0 P�

(d) if � = � then [[P]]

�

==) & [[P

0

]].

2. Suppose that [[P]]

�

==)P

1

. Then there exists P

0

2 L� such that:

(a) if � = a(b) then P

a(b)

====)P

0

, with P

1

& [[P

0

]];

i. There exists Q

0

such that Q

ab

===)Q

0

and (�c)(p . c j P

0

) �

l

(p . b j Q

0

). By

Lemma A.2, there exists a process Q

1

such that [[Q]]

a(p)

====)Q

1

& (p! b j Q

0

).

So, [[P]]

a(p)

����!P

1

& [[(�c)(p . c j P

0

)]] and [[Q]]

a(p)

====)Q

1

& [[p . b j Q

0

]], and we can

conclude since ([[(�c)(p . c j P

0

)]]; [[p . b j Q

0

]]) 2 S.

ii. There exists Q

0

such that Q

a(c)

====)Q

0

and (�c)(p . c j P

0

) �

l

(�c)(p . c j Q

0

). By

Lemma A.2, there exists a process Q

1

such that [[Q]]

a(p)

====)Q

1

& (�c)(p! c j [[Q

0

]]).

So, [[P]]

a(p)

����!P

1

& [[(�c)(p . c j P

0

)]] and [[Q]]

a(p)

====)Q

1

& [[(�c)(p . c j Q

0

)]], and we

can conclude since ([[(�c)(p . c j P

0

)]]; [[(�c)(p . c j Q

0

)]]) 2 S.

We prove the implicationQ

(b) There exists Q

0

such that Q

a(c)

====)Q

0

and Q

1

& (�c)(p! c j [[Q

0

]]). So, we have

[[(�c)(p . c j P

0

)]] . P

1

�

a

Q

1

& [[(�c)(p . c j Q

0

)]]. We can therefore conclude that

((�c)(p . c j P

0

) ; ((�c)(p . c j Q

0

)) 2 S.

�

A.3 Complement to the Proof of Lemma 7.1

Proof: The proof is by induction on n. The case n = 0 is trivial because '

0

l

= L��L�. If n > 0,

by induction, we suppose that

(�L

0

)(P j R(n;L)) '

�

(�L

0

)(Q j R(n;L)) and P

�

==)P

0

.

We proceed by case analysis on the action � to show that Q can match the action �.

1. � = � . Then:

(�L

0

)(P j R(n;L;M))

�

==)(�L

0

)(P j (c

�

n

�R(n� 1;L;M)))

To match this reduction up to barbed bisimulation we have to have:

(�L

0

)(Q j R(n;L;M))

�

==)(�L

0

)(Q

1

j (c

�

n

�R(n� 1;L;M)))

We make a further reduction on the left handside

(�L

0

)(P j (c

�

n

�R(n� 1;L;M)))

�

==)(�L

0

)(P

0

j R(n� 1;L;M))

Again this has to be matched by (note that we cannot run the process R(n�1;L;M) without

losing a commitment b

n

or b

0

n

):

(�L

0

)(Q

1

j (c

�

n

�R(n� 1;L;M)))

�

==)(�L

0

)(Q

0

j R(n� 1;L;M))

We observe that Q

�

==)Q

1

�

==)Q

0

and we conclude by applying the inductive hypothesis.

2. � = ab. We may suppose b 2 L. Then

(�L

0

)(Q j R(n;L;M))

�

==)

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [fa

0

g;M[fa

0

g)))

We take a further step on the lhs:

(�L

0

)(P j c

a

n

� a(x). (a

0

. x j R(n� 1;L [fa

0

g;M[fa

0

g;)))

�

==)

(�L

0

)(P

0

j a

0

. b j R(n� 1;L;L [

c

a

n

� a(x). (a

0

. x j R(n� 1;L [fa

0

g;M[fa

0

g;)))

�

==)

(�L

0

)(P

0

j a

0

. b j R(n� 1;L;L [

(b) or by

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [fa

0

g;M[fa

0

g)))

�

==)

(�L

0

)((�c)(Q

0

j a

0

. c) j R(n� 1;L [fa

0

g;M[fa

0

g))

This means that that Q

�

==)Q

1

a(c)

====)Q

0

. By inductive

We make a further reduction on the lhs:

(�L

0

)(P j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [fa

0

;Mg)))))

�

==)

(�L

0

a

0

)(P

0

j R(n� 1;L [fa

0

;Mg))

This is matched by:

(�L

0

)(Q

1

j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [fa

0

;Mg)))))

�

==)Q

00

We have two possibilities:

(a) Q

1

�

==)Q

0

and Q

00

� (�L

0

a

0

)(Q

0

j aa

0

j R(n� 1;L [fa

0

g;M)).

Then Q

�

==)Q

1

�

==)Q

0

and P

0

'

n�1

l

Q

0

j

and

(w . b j A

1

) �

(�c)(p . c j (w . b j P

0

)) S

(�c)(p . c j ((�d)(w . d j Q

0

))) �

(�d)(w . d j B

1

).

iii. Q

ah

===)Q

0

, with h 6= b and (w . b j P

0

) S (w . h j Q

0

) for some fresh name w. We

reason as in the previous case.

(d) If A

a(b)

����!A

1

the reasoning is similar to that for case 3.

3. The proof follows from Lemma A.6(2) and Proposition 4.3. Let r be a fresh name, by

hypothesis we know that Pf

r

=cg �

lut

(�c)(r . c j Q). By Lemma A.6(2), we have

(�r)(p . r j Pf

r

=cg) �

lut

(�r)(p . r j (�c)(r . c j Q))

for p fresh. By Proposition 4.3 we have

(�r)(p . r j (�c)(r . c j Q)) � (�c)((�r)(p . r j r . c) j Q) & (�c)(p . c j Q).

Since (�c)(p . c j P) � (�r)(p . r j Pf

r

=cg) and ��

lut

�& � �

lut

we can conclude that

(�c)(p . c j P) �

lut

(�c)(p . c j Q).

4. As in Part 3, the proof can be derived by Lemma A.6(2) and Proposition 4.3.

�

A.5 Proof of Lemma 9.6

We restate Lemma 9.6.

Lemma A.7 (Operational correspondence of f[[�]]g) Let P be a process in DL�.

1. Suppose that P

�

��!P

0

. Then we have:

(a) if � = a(b) then f[[P]]g

a(b

0

)

����! & f[[P

0

]]gf

b

0

=bg and b

0

62 fn(P)

(b) if � = ab then f[[P]]g

(�c)ac

������! <

a

(c! b j f[[P

0

]]g), with c 62 fn(P)

(c) if � = (�b)ab then f[[P]]g

(�c)ac

������! <

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P)

(d) if �=d(b)ab then f[[P]]g

(�c)ac

������!<

a

(�b)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

(e) if � = (�d)d(b)ab then

f[[P]]g

(�c)ac

������! <

a

(�b)(�d)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

(f) if � = � then f[[P]]g

�

��! <

a

f[[P

0

]]g.

2. Suppose that f[[P]]g

�

��!P

1

. Then there exists P

0

2 DL� such that:

(a) if � = a(b

0

) then P

a(b)

����!P

0

and P

1

<

a

f[[P

0

]]gf

b

0

=bg

(b) if � = (�c)ac then:

i. either P

ab

���!P

0

and P

1

<

a

(c! b j f[[P

0

]]g), with c 62 fn(P)

ii. or P

(�b)ab

������!P

0

and P

1

<

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P)

41

iii. or P

d(b)ab

�����!P

0

and P

1

<

a

(�b)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

iv. or P

(�d)d(b)ab

����! P

0

and P

1

<

a

(�b)(�d)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P) = ;

(c) if � = � then P

�

��!P

0

with P

1

<

a

f[[P

0

]]g.

Proof: The proof is by transition induction. We prove Part 1. The proof of Part 2 is similar.

1. � = a(b). The interesting case is when the last rule applied to get P

a(b)

����!P

0

is d-in. By

Lemma 5.2(1), since & implies <

a

, it holds that

i. If c 6= b then (�b)(P

0

f

c

=bg) = P

0

f

c

=bg. By induction hypothesis it holds that

fjP jg

(�d)ad

������! <

a

d! c j fjP

0

jg

with d fresh. Since fj a(b)P jg

def

= (�b)(a(b

0

). b! b

0

j fjP jg), by Proposition 4.3(2)

and Lemma 5.2 it holds that:

fja(b)P jg

�

��! <

a

(�b)((�d)(b! d j d! c) j fjP

0

jg)

<

a

(�b)(b! c j fjP

0

jg)

<

a

fjP

0

jgf

c

=bg

= fjPf

c

=bgjg.

ii. If c = b then (�b)(P

0

f

c

=bg) = (�b)P

0

. By induction hypothesis it holds that

fjP jg

(�d)ad

������! <

a

d! c j fjP

0

jg

with d fresh. Since fj a(b)P jg

def

= (�b)(a(b

0

). b! b

0

j fjP jg), by Proposition 4.3(2)

and Lemma 9.5 it holds that:

fja(b)P jg

�

��! <

a

(�b)((�d)(b! d j d! b) j fjP

0

jg)

<

a

(�b)(b! b j fjP

0

jg)

<

a

(�b)fjP

0

jg.

(c) Suppose cls is the last rule applied for deriving P

�

��!P

0

.

cls:

P

�

b

ab

����!P

0

Q

a(b

0

)

����!Q

0

bn(�

b

) \ fn(Q)=;

P j Q

�

��!�

b

(P

0

j Q

0

f

b

=b

0

g)

We can suppose �

b

= d(b) for some d. The case when �

b

= (�d)d(b) is similar. By

induction hypothesis it holds that:

� fjP jg

(�c)ac

������! <

a

(�b)(d(b

0

). b! b

0

j c! b j fjP

0

jg), with fb

0

; cg \ fn(P) = ;...

�f((b)

References

[1] S. Abramsky. Proofs as Processes. Theoretical Computer Science, 135(1):5{9, December 1994.

[2] R. Amadio. An asynchronous model of locality, failure, and process mobility. In Proc. Coordination'97,

volume 1282 of Lecture Notes in Computer Science. Springer Verlag, 1997.

[3] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous �-calculus. Theo-

retical Computer Science, 195:291{324, 1998. Extended abstract in Proc. CONCUR '96, LNCS 1119,

Springer Verlag.

[4] A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[5] S. Arun-Kumar and M. Hennessy. An e�ciency preorder for processes. Acta Informatica, 29:737{760,

1992.

[6] G. Bellin and P. Scott. On the �-calculus and Linear Logic. Theoretical Computer Science, 135(1):11{

65, December 1994.

[7] M. Boreale. On the expressiveness of internal mobility in name-passing calculi. Theoretical Computer

Science, 195:205{226, 1998.

[8] M. Boreale, C. Fournet, and C. Laneve. Bisimulations for the Join Calculus. In Proc. IFIP Conference

PROCOMET'98, 1997.

[9] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without matching. In 13th LICS

Conf. IEEE Computer Society Press, 1998.

[10] G. Boudol. Asynchrony and the �-calculus. Technical Report RR-1702, INRIA-Sophia Antipolis,

1992.

[11] G. Boudol. Some Chemical Abstract Machines. In Proc. Rex School/Symposium 1993 \A Decade

of Concurrency | Reexions and Perspectives", volume 803 of Lecture Notes in Computer Science,

pages 92{123. Springer Verlag, 1994.

[12] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of linda coordination primitives.

Theoretical Computer Science, 192(2):167{199, 1988.

[13] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59, 1995. Short

version in Proc. of POPL '95.

[14] Silvano Dal-Zilio. Implicit polymorphic type system for the blue calculus. Technical Report RR-3244,

Inria, Institut National de Recherche en Informatique et en Automatique, 1997.

[15] C. Fournet and G. Gonthier. The Reexive Chemical Abstract Machine and the Join calculus. In

Proc. 23th POPL. ACM Press, 1996.

[16] Cedric Fournet. The Join calculus: a Calculus for Distributed Mobile Programming. PhD thesis,

�

Ecole Polytechnique, 1999.

[17] C�edric Fournet, Cosimo Laneve, Luc Maranget, and Didier R�emy. Implict typing �a la ML for the

join-calculus. In Proc. CONCUR 97, volume 1243 of Lecture Notes in Computer Science. Springer

Verlag, 1997.

[18] Y. Fu. A proof theoretical approach to communication. In 24th ICALP, volume 1256 of Lecture Notes

in Computer Science. Springer Verlag, 1997.

[19] M. Hennessy and J. Riely. A typed language for distributedFoc.

[25] Hans H�uttel and Josva Kleist. Objects as mobile processes. Technical report RR-96-38, BRICS -

Basic Research in Computer Science, 1996.

[26] J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In Proc. PROCOMET'98.

North-Holland, 1998.

[27] N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the pi-calculus. ACM Transactions on

Programming Languages and Systems, 21(5):914{947, 1993. Short version in Proc. POPL'96.

[28] Jean-Jacques L�evy. Some results on the join-calculus. In Proc. TACS '97, volume 1281 of Lecture

Notes in Computer Science. Springer Verlag, 1997.

[29] M Merro. Locality and polyadicity in asynchronous name-passing calculi. In Proc. FOSSACS2000,

volume 1784 of Lecture Notes in Computer Science. Springer Verlag, 2000.

[30] M. Merro, J. Kleist, and U. Nestmann. Mobile Objects as Mobile Processes. Accepted for publication

in Journal of Information and Computation, 2001. An extended abstract entitled Local �-calculus at

Work: Mobile Objects as Mobile Processes, in Proceedings of TCS'00, LNCS 1872, August 2000.

[31] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{180, LFCS, Dept.

of Comp. Sci., Edinburgh Univ., October 1991. Also in Logic and Algebra of Speci�cation, ed. F.L.

Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag, 1993.

[32] R. Milner. Action structure for the �-calculus. Technical Report ECS{LFCS{93{264, Laboratory for

Foundations of Computer Science, Computer Science Department, Edinburgh University, 1992.

[33] R. Milner. Functions as processes. Journal of Mathematical Structures in Computer Science, 2(2):119{

141, 1992.

[34] R.. Milner. Action calculi, or syntactic action structures. In Proc MFCS'93, volume 711 of Lecture

Notes in Computer Science. Springer Verlag, 1993.

[35] R. Milner. Action calculi V: reexive molecular forms (with appendix by Ole Jensen). Draft, 1994.

[36] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and II). Information

and Computation, 100:1{77, 1992.

[37] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. ICALP'92, volume 623 of Lecture Notes

in Computer Science. Springer Verlag, 1992.

[38] U. Nestmann and B. Pierce. Decoding choice encodings. Journal of Information & Computation,

163:1{59, November 2000.

[39] G.K. Ostheimer and A.J.T. Davie. �-calculus characterisations of some practical �-calculus reductions

strategies. Technical Report CS/93/14, St. Andrews, 1993.

[40] J. Parrow and B. Victor. The update calculus. In Proc. AMAST '97, volume 1349 of Lecture Notes

in Computer Science. Springer Verlag, 1997.

[41] J. Parrow and B. Victor. The fusion calculus:

[49]

