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Abstrat

What is neuronal apability of disriminating between di�erent input signals? Fur-

thermore, how to improve its disriminating apability? We explore these issues both

theoretially and numerially for the integrate-and-�re (IF) model and the IF-FHN

model (a simpli�ed version of the FitzHugh-Nagumo model [6℄). It is found that adding

orrelations and inreasing inhibitory inputs onsiderably redue the total probability

of mislassi�ations (TPM). A novel theory on disrimination tasks is developed and

the theory aounts for all observed numerial results.

1 Introdution

To eÆiently disriminate between di�erent input signals, for example to tell the im-

age of a prey from that of a predator, is of vital importane to a nervous system. The

atual

fro
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that the information extrated from single neuron ativity in MT is almost enough to

aount for psyhophysial experiment data. Hene an observation of the �ring rates

of single neuron, at least in MT, ontains enough information to further guide motor

ativity. Imagining the enormous number of neurons in the ortex, their �ndings are

striking and open up many interesting issues for further theoretial and experimental

study. Interestingly, similar �ndings are reported in somatosensory pathways [15℄ as

well. In line with these experimental results, in this paper we onentrate on the rela-

tionship of the input and output �ring rates of a single neuron. The issue we are going

to address is quite straightforward (see Fig. 1). Suppose that a neuron reeives two set

Figure 1: For two mixed signals (left), afterrela-psyu3203 Td
1oInsI4d.0398 tilltheymore

mixed or more separated?

of signals (oded by �ring rates) distributed aording to two histogramsdepited

in Fig. 1 (left). Will the signals beome more mixed or



3

�re(IF) model and the IF-FHN
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Theoretially the ritial value of the oherent inputs at whih the output his-

tograms are separable is exatly obtained (Theorem 2) for the ase of orrelated and

exatly balaned inputs (the most interesting ase). The results enable us to assess the

dependene of our onlusions on di�erent model parameters and input signals. It is

illuminating to see that the ritial value is independent of model parameters inluding

the threshold, the deay time and the EPSP and IPSP magnitude.

All the aforementioned results are obtained for the IF and IF-FHN model without

reversal potentials, we further examine our onlusions for the IF model with reversal

potentials. Sine adding reversal potentials to a model is equivalent to inreasing its

deay rate (depending on input signals), we would naturally expet that the model

with reversal potentials will beome more e�etively to distinguish di�erent inputs.

The onlusion is numerially on�rmed.

During the past few years, inhibitory inputs (see for example [11, 12℄) and orrelated

inputs (see for example [17, 18℄ are two topis widely investigated in neurosiene. It

seems it is generally aepted that they play important roles in information proessing

in the brain. Our results here provide a onvining and diret evidene to show that

they do improve the performane of a single neuron. Suh results would also be valuable

on pratial appliations of spiking neural networks [9℄.

2 The Integrate-and-�re Model and its Inputs

The �rst neuron model we use here is the lassial Td
[(most)Tj
23.g4d84tionsis
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orrelation oeÆient between ith exitatory (inhibitory) synapse and jth exitatory

(inhibitory) synapse is  > 0. The orrelation onsidered here reets the orrelation

of ativity of di�erent synapses, as disussed and explored in [6, 21℄. It is not the

orrelation of single inoming EPSP or IPSP whih ould be expressed as 

ij

(t� t

0

) for

the EPSP (IPSP) at time t of the ith synapse and time t

0

of the jth synapse. We refer

the reader to [6℄ for a detailed disussion on the meaning of the orrelation onsidered

here.

In summary, suppose that a neuron reeives p synapti inputs. The goal of the

postsynapti neuron is to disriminate between two types of inputs

1. p

c

exitatory
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diretion of a dot. Denote that N

i

(t); i = 1; � � � ; p as a Poisson proess with a rate �

i

,

where �

i

takes value from [0; 100℄Hz, i.e. (�

i

=
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about 13:5% and for the right upper panel is 5:5%. Therefore adding inhibitory inputs

to the neuron onsiderably improves its disrimination apability, reduing TPM from

13:5% to 5:5%.

In Fig. 4 the histogram of oeÆient of variation (CV) of e�erent spike trains is

plotted. Our results also reveal one possible funtional role of e�erent spike trains with

a high CV widely observed in experiments. In the past few years, there are a large body

of literatures devoted to the topi: how to generate e�erent spike trains with a large

CV for the IF model(see [6℄ for a review). Nevertheless, the funtional impliations of

e�erent spike trains with a large CV are still not lear. Here we �nd that for a �xed

oherene level, a lower TPM value orresponds to a larger
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than harmful. The bene�t of noise in neuronal system has been extensively explored

in the literature of stohasti resonane [8℄. However, the mehanism to reah the

�nely tuning noise level whih results in the stohasti resonane seems far-fethed for

neuronal systems. Our �nding here provides a more diret and onvining evidene

whih learly demonstrates the advantage of adding noise to a neuronal system.
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Figure 5: TPM % vs. r (left) and TPM vs. p

c

(right) for the IF model. When p

c

= 15 (left),

it is learly shown that TPM attains its optimal value at r = 1,
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To the �rst order approximation, Eq. (3.4) reveals the underpinning mehanism of

the phenomena observed here. From Eq. (3.4) we have

hT i � hT

1

i =

2g(0)V

thre

a

q

[�

j

p

c

(1 + (p

c

� 1)) + (p� p

c

)h�

1

i+

p

p� p

c

��(�

1

)℄(1 + r)

(3.5)

The �ring rate in the unit of Hz is then

1000

R

e

+ hT

1

i

=

1000a

q

[�

j

j

j

j
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�(�

1

) = :1=

p

12 (upper panel) and �(�

1

) = 1=

p

12 (bottom panel). When h�

1

i = 0:05

and �(�

1

) = :1=

p

12, the mean and variane are the same as in the model onsidered in

the previous subsetions. When h�

1

i = 0:05 and �(�

1

) = 1=

p

12, the standard deviation

of inputs is enlarged by a fator of 10, in omparison with the setup in the previous

subsetions. It is easily seen that inreasing the variane in input signals will make the

histograms of �ring rates more widely spread out, as shown in Fig. 6, bottom panel.

Nevertheless, when p

c

= 25 we see that the input signals an be perfetly separated.

3.2 Models With Reversal Potentials

A slightly more general model than the IF model de�ned above is the IF model with

reversal potentials de�ned by

dZ

t

= �(Z

t

� V

rest

)Ldt+ d

�

I

syn

(Z

t

; t) (3.9)

where

�

I

syn

(Z

t

; t) = �a(V

E

� Z

t

)

p

X

i=1

E

i

(t) +

�

b(V

I

� Z

t

)

q

X

j=1

I

j

(t)

V

E

and V

I

are the reversal potentials V

I

< V

rest

< V

E

, �a(V

E

� V

rest

);

�

b(V

I

� V

rest

) are

the magnitude of single EPSP and IPSP when Z

t

= V

rest

. We ould rewrite Eq. (3.9)

in the following form

dZ

t

= �(Z

t

� V

rest

)(Ldt+ �a

p

X

i=1

dE

i

(t) + �a

p

X

i=1

dI

i

(t))

+�a(V

E

� V

rest

)

p

X

i=1

dE

i

(t) +

�

b(V

I

� V

rest

)

q

X

j=1

dI

j

(t)

= �(Z

t

� V

rest

)[Ldt+ �a

p

X

i=1

dE

i

(t) +

�

b

p

X

i=1

dI

i

(t)℄

+a

p

X

i=1

dE

i

(t) + b

q

X

j=1

dI

j

(t)

(3.10)

Therefore the di�erene between the model with and without reversal potentials is that

the latter has a deay rate depending on inoming signals. From
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the previous subsetions we would expet that the model with reversal potentials will

improve its apaity of disriminating inoming signals.

Fig. 7 is in agreement with our expetations. We see that for p

c

= 15 and

r = 0:6 a perfet disrimination is ahieved. For the model without reversal po-

tentials, we see that for p

c

= 15 and r = 1 we still have TPM > 0 (see pre-

vious subsetions). The parameters used in the model with reversal potentials are

�a = 0:01;

�

b = 0:1; V

E

= 100mV; V

I

= �10mV , with all other parameters as the model

without reversal potentials.
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Figure 7: Histogram of �ring rates in the unit of Hz ( upper panel) and CV (bottom panel)

with  = 0:1; p

c

= 15 for the IF model with reversal potentials. Left, exlusively exitatory

inputs r = 0. Right, r = 0:6.
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3.3 IF-FHN Model

The IF model is the simplest neuron model whih mimis ertain properties of a bi-

ologial neuron and is linear before resetting. A slightly more omplex model is the

IF-FHN model, an IF model but with a nonlinear leakage oeÆient, as in a biophysial

model. In terms of the output signal-to-noise ratio, we know that the IF and IF-FHN

model behave in totally opposite ways when they reeive orrelated inputs (see [6℄ for a
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disrimination apability of the model neuron. Furthermore, the fration of oherent

inputs whih ensures a perfet disrimination is less than that of the IF model. For

example, in Fig. 8, with p

c

=p = 25=300 of oherent inputs the histograms of e�erent

frequeny are well separated when r = 1.

4
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and denote

�(�

1

; �

2

; ; r) = fp

c

: R

min

(�

2

) = R

max

(�

1

)g (4.1)

If it is lear from the ontext about the dependene of �(�

1

; �

2

; ; r) on ; r, we some-

times simply write �(�

1

; �

2

; ; r) as �(�

1

; �

2

). Hene for �xed (�

1

; �

2

), �(�

1

; �

2

) gives

us the ritial value of p

c

: when p

c

> �(�

1

; �

2

) the input patterns are perfetly separa-

ble in the sense that the the output �ring rate histograms are not mixed with TPM=0;

when p

c

<
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Hene the derivative of the seond term in Eq. (4.6) is

2

L

�

Z

V

thre

L

0

g

0

0

�

y � a[p

c

�

j

+ x℄(1 � r)

a

q

[�

j

p

c

(1 + (p

c

� 1)) + x℄(1 + r)

1

A

�

�2a(1� r)[�

j

p

c

(1 + (p

c

� 1)) + x℄(1 + r)� (y � a[p

c

�

j

+ x℄(1� r)(1 + r)

2a(

q

[�

j

p

c

(1 + (p

c

� 1)) + x℄(1 + r))

3

dy

� g

j

p x℄(1 r
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� The output �ring rate is an inreasing funtion of inputs

� Input �ring rate is on�ned within a �nite region, whih is of ourse the ase in

neurosiene

we simplify our task from �nding out the variane of hT i to solving an algebra equation

de�ned in Theorem 1. Theorem 1 is the starting point of all following results.

Theorem 2 When  = 0 we have

�(�

1

; �

2

; 0; r) =

p�

max

�

2

� �

1

+ �

max

independent of r. When  > 0 we have

�(�

1

; �

2

; ; r

2

) < �(�

1

; �

2

; ; r

1

) < �(�

1

; �

2

; 0; r) (4.10)

where 1 � r

2

> r

1

> 0 and furthermore

�(�

1

; �

2

; ; 1) =

p

[(�

2

� �

1

)(1� ) + �

max

℄

2

+ 4p�

max

(�

2

� �

1

)� (�

2

� �

1

)(1� )� �

max

2(�

2

� �

1

)

(4.11)

Before proving the onlusions, we �rst disuss the meaning of Theorem 2. The

�rst onlusion tells us that with  = 0, no matter how strong the inhibitory inputs

are, the ritial value of p

c

is independent of r. In other words, without orrelated

inputs, inreasing inhibitory inputs does not enhane the disrimination apaity of

the neuron. In Theorem 3 below, we will further prove that without orrelated inputs,

if the inputs are separable, so are the outputs and vise versa. The seond onlusion

says that the disrimination apaity of the neuron is improved if the neuron reeived

orrelated inputs. With orrelated inputs, inreasing inhibitory inputs does enhane

the disrimination apaity of the neuron. In partiular, we see that for a �xed  > 0,

the optimal disrimination apaity is attained when r = 1. Hene Theorem 2 on�rms

our numerial results on the IF model presented in the previous setion.
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i=1

�

i

. De�ne

R

i

min

(�

2

) = minf�; p

i

2

(�) > 0g

and

R

i

max

(�

1

) = maxf�; p

i

1

(�) > 0g

Then the relationship between R

i

min

(�

2

)�R

i

max

(�

1

) and R

min

(�

2

)�R

max

(�

1

) hara-

terizes the input-output relationship of neuron signal transformations.

We �rst want to assess that whether R

min

(�

2

)�R

max

(�

1

) > 0 even when R

i

min

(�

2

)�

R

i

max

(�

1

) < 0, i.e. the input signal is mixed, but the output signal is separated. In Fig.

12, we plot R

min

(�

2

)�R

max

(�

1

) vs R

i

min

(�

2

)�R

i

max

(�

1

) = �

2

p

c

��

1

p

c

��

max

(p�p

c

),

whih is a funtion of p

c

. It is easily seen that after neuronal transformation, mixed

signals are better separated when  > 0. For example, when  = 0:1; r = 1 and

R

i

min

(�

2

)�R

i

max

(�

1

) = �5000 Hz (mixed), but R

min

(�

2

)�R

max

(�

1

) > 0 (separated).

The onlusion is not true for  = 0, but the separation is not worse after neuronal

transformation.
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Theorem 3 If  > 0 we have

R

min

(�

2

)�R

max

(�

1

) > 0 when R

i

min

(�

2

)�R

i

max

(�

1

) = 0

Proof Aording to the de�nition of R

i
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(�

2

) and R

i

max

(�

1

) we have R

i

min

(�

2

) = p

c

�

2

and R

i

max

(�

1

) = p

c

�

1

+ �

max

(p� p

c

). From the proof of Theorem 1 we onlude that
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)�R
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)�R
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(�
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2

)�R
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1

) > 0 if and only if
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℄
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�
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(4.17)

is greater than zero. Sine p

c

�

2

= p

c

�

1

+ �

max

(p � p

c

) we an rewrite Eq. (4.17) as

follows
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y � a[p

c
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℄(1 � r)

a

p

[�

2

p

c

(1 + (p

c

� 1))℄(1 + r)

!#
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(4.18)

Again from the proof of Theorem 1 we know that g is an inreasing funtion, by noting

p

[�

1

p

c

(p

c

� 1)) + p

c

�

2

℄ <

p

[�

2

p

c

(1 + (p

c

� 1))℄ we onlude that Eq. (4.18)> 0.

Furthermore, the output di�erene of �ring rates is an inreasing funtion of p

c

,

this, together with the onlusions above, also implies the remaining results of Theorem

2.

Theorem 3 reveals one of the interesting properties of neuronal transformation.

Under the assumptionoutp0sthethe outp.12 Tf
7.2sign00.5mplies
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5 Disussion

We have onsidered the problem of disriminating between input signals in terms of

an observation of e�erent spike trains of single neuron. We have demonstrated, both

theoretially and numerially, that two key mehanisms to enhane the disrimination

apability of the model neuron is to inrease inhibitory inputs and orrelated inputs.

In [10℄, the authors have theoretially onsidered disrimination tasks as well. Never-

theless, our approah is very di�erent from theirs. We have onentrated on neuronal

mehanisms, but their results are more or less a diret appliation of results in statistis.

There are many issues to be further explored in the future.

� We have only onsidered to aomplish the disriminating task and have not

inluded time onstrains. De�nitely it is of vital importane for a neuronal system

to tell one signal from the other within a time window as short as possible.

� We have tested our model with stati inputs. It is an interesting question to

generalize our results here to time-varying inputs as reported in [15℄. Suh a study

might be helpful to larify the ongoing debate on the advantages of 'dynamial

stimuli' over the 'stati stimuli'.

� The input signal used here is very naive. To transform the image of moving

dots to input signals spei�ed in the present paper requires a neural network to

preproess the image. Hene to devise a network model (spiking neural networks

or Reihardt detetor [3℄) to reprodue our results is one of our ongoing researh

topis. We expet that suh a study ould provide us with a template to ompare
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Disriminating between di�erent input signals is probably more fundamental on-

strains on the neural system than others suh as maximizing input-output information

or redundany redutions, a view reently ehoed in [1℄. To understand it will reveal

priniples employed by neuronal systems whih remain mysterious to us. The issue

disussed here is urrently a hot topi in neurosiene (for example see [13℄). Our ap-

proah provides us with a solid theoretial foundation for further study and we expet

that our approah also opens up many interesting questions to be further investigated

in the future.
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