
A Model for the �- Calculus

�

M. Hennessy

University of Sussex

Abstract

We develop a semantic theory based on testing for a minor variant of the

�-calculus. The resulting semantic equivalence can be characterised using of ac-

ceptance sets and can also be characterised as an equational theory. We de�ne a

class of interpretations for the �-calculus and construct one which is

1 Introduction

In [MPW92a], [MPW92b], a calculus of mobile processes, the �-calculus, is presented.

The �rst reference is an introduction to the calculus and the second develops a semantic

theory based on bisimulations, [Mil89]. The �-calculus is an extension of the process

algebra

where it is written as t n x. In fact it is with this operator that the communication of

private channels may be represented in the language. Unlike the original �-calculus we

use an if : : : then : : : else : : : statement. The process if be then t else u acts like t if the

boolean expression be is true and like u otherwise. We allow a very simple language of

boolean expressions. Essentially it allows the testing of identity between channel names.

Finally we have recursive de�nitions; intuitively the process recX: t is equivalent to a

process X where X has been de�ned by the equation X = t. We use � to denote the

set of operators fnil;
; (x); xy;+;�; jg, i.e. all the operators except pre�xing by input

actions; the interpretation of this last operator will require special attention.

As usual rec acts like a binder for process variables and we have an appropriate

[t]

Input

�

x(y):p

x(v)

�! pfv=yg

v 62 fn((y)p)

Output

�

xy:p

xy

�! p

Sum

p

a

�! p

0

p + q

a

�! p

0

Par

p

a

�! p

0

p j q

a

�! p

0

j q

bn(a) \ fn(q) = ;

Res

p

a

�! p

0

(y):p

a

�! (y):p

0

y 62 n(a)

Open

p

xy

�! p

0

(y):p

x(v)

�! p

0

fv=yg

y 6= x and v 62 fn((y)p

0

)

If

p

a

�! p

0

; [[be]] = tt

if be then p else q

a

�! p

0

q

a

�! q

0

; [[be]] = �

if be then p else q

a

�! q

0

Figure 1: Rules for external actions

In the remainder of this section we develop some technical results about this transition

system and it may be skipped by the reader uninterested in technical details. Most of the

proofs are omitted as they are rather tedious and usually proceed by syntactic analysis.

The �rst two results are taken directly from [MPW92b] and the proofs can be transferred

directly to our language.

Lemma 2.1 If p �! p

0

then fn(p

0

) � fn(p) and if p

a

�! p

0

then fn(p

0

) � fn(p)[bn(a)

and fn(a) � fn(p) 2

De�nition 2.2 We use the phrase

if p

a

�! p

0

then equally q

a

�! q

0

to mean that if p

a

�! p

0

may be inferred from the transition rules then q

a

�! q

0

may also

be inferred, with an inference of no greater depth. We use a similar notation for internal

arrows. 2

Lemma 2.3 Suppose that p

�(y)

�! p

0

where � = x or � = x and that z 62 n(p). Then

equally p

�(z)

�! p

00

for some p

00

such that p

00

�

�

p

0

fz=yg. 2

6

[t]

�

 �!

Rec

�

recX: t �! t[recX: t=X]

Choice

p �! p

0

p� q �! p

0

Op

p

i

�! p

0

i

op(: : : ; p

i

; : : :) �! op(: : : ; p

0

i

; : : :)

for op 2 f+; j; (y)g

Com

p

xy

�! p

0

; q

x(z)

�! q

0

p j q �! p

0

j q

0

fy=zg

Close

p

x(w)

�! p

0

; q

x(w)

�! q

0

p j q �! (w)(p

0

j q

0

)

If

p �! p

0

; [[be]] = tt

if be then p else q �! p

0

q �! q

0

; [[be]] = �

if be then p else q �! q

0

Figure 2: Rules for internal transitions

In the operational semantics bound names are liberally renamed and it is important

to establish that �-conversion does not seriously a�ect the behavioural properties of

processes. The next series of results have this in mind. In the next section a new kind of

action, a free input action, will be seen to be important and therefore these results will

be also established for these actions. Recall that p

x(y)

�! p

0

means that y is acting as a

reference in p

0

to where names which are received by p are placed. This is actually how

it is used in the rule Com of Figure 2. So it is natural to de�ne a free input action by

p

xy

�! p

0

fy=zg wheneverifp

then u must be of the form x(z):u

0

for some z such that s �

�

u

0

fy=zg. We will make

frequent use of the notion of a harmless action or sequence of actions. In a particular

statement a sequence of actions is considered harmless if the bound variables are di�erent

than any of the variables appearing in the rest of the statement. This de�nition is of

coursethe

Proof: Once more both results are proved simultaneously by induction on the length

of the derivations. Note that in i) it is su�cient to sim

Lemma 2.8 For any a; p the set D(p; a) is �nite.

Proof: The proof is straightforward by structural induction on p. Note that if p has

the form recX: t then this set is empty for every a. 2

Of course a process may

3 Testing Processes

Given the operational semantics of the previous section we may now apply the standard

theory of testing as developed in [Hen88]. To this end we assume a special name called

! which is used to denote success. A test or experiment is then simply a process which

may use this extra name and applying a test e to a process p consists in running the

process e j p to completion. A computation from e j p is a complete sequence of the form

e j p = s

0

�! s

1

�! : : : �! s

k

�! : : :

i.e. it is either in�nite or if s

n

is the last element there must be no s

0

such that s

n

�! s

0

.

Such a computation is successful if some s

k

can report success, i. e. s

k

!(x)

�! for any name

x. We often write this as s

k

2 Succ. Then we write

p must e

if every computation from p j e is successful. Finally we say

p

<

�

q

if for every experiment e, p must e implies q

De�nition 3.1 For every sequence s 2 RAct

1. let # s be de�ned by

� p # " if there is no in�nite internal computation from p, i.e. no in�nite com-

putation of the form p �! p

1

�! : : : �! p

k

�! : : :.

� p # a:s if p # and for every p

0

such that p

a

=) p

0

p

0

s.

2. let p + s if for every s

0

such that s �

�

s

0

p # s

0

.

2

To prove that the latter is preserved by �-conversion we need a lemma.

Lemma 3.2 For every process p

1. p� # implies p #

2. if � is injective on fn(p) then p # implies p� #

3. p �

�

q and p # implies q #.

Proof: As an example we prove the second statement. Suppose

p� �! r

1

�! : : : �! r

n

�! : : :

is an in�nite sequence. By Lemma 2.5 p �! p

1

such that p

1

� �

�

r

1

and by Proposi-

tion 2.7, part (3), p

1

� �! r

0

2

such that r

2

�

�

r

0

2

. Again by Lemma 2.5 p

1

�! p

2

such

that p

2

� �

�

r

2

. Continuing in this way we obtain an in�nite internal computation from

p. 2

As a corollary we have

Proposition 3.3

1. If p �

�

q and p + s then q + s.

2. if � is injective on fn(p) then p + s implies p� + �(s)

3. if p� + s

0

then for every �

0

and s such that p� �

�

p�

0

and �

0

(s) �

�

s

0

; p + s.

Proof: The �rst statement directly from the previous lemma and the results at the end

of the previous section. For suppose p * s, i. e. for some pre�x s

0

of some s

00

such that

s �

�

s

00

p

s

0

=) p

0

such that p ". So by Proposition 2.7 q

s

0

1

=) q

0

for some q

0

and s

0

1

such

that s

0

�

�

s

0

1

and q

0

�

�

p

0

fbn(s

0

)=bn(s)g. Since p

0

" it follows from the previous lemma

that p

0

fbn(s

0

)=bn(s)g " and therefore that q

0

". This in turn implies that q * s.

We leave the second statement to the reader and concentrate on the last. Suppose

p * s, i. e. p

u

=) p

0

where p " for some pre�x u of s. By Proposition 2.7 this means that

p�

0

u

0

=) r for some r and u

0

such that r �

�

p

0

�

0

[bn(u) 7! bn(u

0

)] and u

0

�

�

�

0

(u). From

12

the previous lemma this means that r " and therefore p�

0

* u

0

, i. e. p�

0

* s

0

. Applying

clause (1) we obtain p� * s. 2

In fact in order to establish that a process is convergent with respect to all sequences

which are �-equivalent to s it is su�cient to establish it for a sequence whose bound

variables are new, i.e. a harmless sequence.

Lemma 3.4 If bn(s) \ fn(p) = ; then p + s if and only if p # s.

Proof:

� for some harmless s

0

such that s �

�

s

0

, (i. e. bn(s

0

) \ (fn(p) [fn(q)) = ;),

A(p; s

0

)� A(q; s

0

)

2

First we show that this preorder is preserved by �-conversion.

Proposition 3.8 If p �

�

q then p � q.

Proof: From Proposition 3.3 we know that that p �

�

q and p * s implies q * s and

the result therefore follows by the preceding lemma. 2

Proposition 3.10 If p � q then p

<

�

q.

Proof: The proof has the same structure as that for the corresponding result in [Hen88],

Lemma 4.4.13, although the details are more complicated because of the di�erent forms

of communication allowed in the �-calculus. Suppose p � q and p must e. We show

q must e by examining an arbitrary computation from e j q :

e j q = r

0

�! r

1

�! : : : �! r

k

�! : : : (�)

and proving that there is some e

n

such that e

n

2 Succ. The proof depends on whether

the computation (�) is �nite or in�nite. As an example we consider only the �nite case.

So we may assume that r

k

is stable for some k. Each r

i

is of the form (v

i

)r

0

i

where

the individual restricted names in the sequence v

i

arise because of the possible use of

the Close rule from the operational semantics. Nevertheless by concentrating on the

interaction between the two processes the computation (�) may be unzipped into two

derivations from e, q respectively, which use only actions from Act and which show their

individual contributions:

e = e

0

a

1

=) : : : e

j

: : :

a

k

=) e

m

and

q = q

0

a

1

=) : : : q

j

: : :

a

k

=) q

m

:

These are such that for each j there exists an i such that r

0

i

= e

j

j q

j

and if a

i

= x(v); a

i

=

x(v) then r

i�1

�! r

i

is inferred using an instance of the rule Close. If on the other hand

it is inferred using an instance of the rule Com then if a

i

=

one involving a harmless subsequence and combine this with a corresponding derivation

from e to obtain an unsuccessful computation from e j p.

When the computation (�) is in�nite the only possibility we have not touched on is when

the unzipped derivations are in�nite and p converges on all subsequences. Here we make

use of Corollary 2.10 which states that the computation trees from p and q are �nite

branching, modulo �-conversion. The details of how this is used may be found in Lemma

4.4.13 from [Hen88]. 2

To prove the converse we need to de�ne two sets of special tests one of which tests

for convergence and the other which is capable of testing for the contents of A(p; s). The

crucial point is to be able to distinguish

1. The rule Com is used in the derivation.

Then r has the form p

0

j if y 2 X then ! else : : : where p

xy

�! p

0

. This means that

y 2 fn(p) � X and therefore r

p

succ.

2. The rule Close is used in the derivation.

Here r has the form

(y)(p

0

j (if y 2 X then ! else c(s

0

fz=yg)

X[fzg

)fy=zg)

for some new name z, where p

x(y)

�! p

0

. If y 2 X then this term is obviously

in

p

succ. If not we know that p

0

+ s

0

because p + s and since fn(p

0

) � X [

fyg we may apply induction to obtain that p

0

j c(s

0

)

X[fyg

p

succ. But by the

previous lemma c(s

0

)

X[fyg

�

�

c(s

0

fz=yg)

X[fzg

)fy=zg and therefore c(s

0

)

X[fyg

j

p

0

�

�

c(s

0

fz=yg)

X[fzg

)fy=zg j p

0

. It now follows that r

p

succ.

Conversely suppose p j c(s)

X

p

succ. Obviously p # and to show p + s it is su�cient

to prove that if p

x(y)

=) p

0

then p + s

0

. Now it may not be possible for c(s)

X

to perform

x(y) because y may be in X. So pick a completely new v. Then p

x(v)

=) p

0

fv=yg and

p j c(s)

X

�! r where up to �-conversion we may take r to be

(v)p

0

fv=yg j if v 2 X then ! else c(s

0

fv=yg)

X[fvg

:

Moreover we know that r

p

succ and therefore that p

0

fv=yg j c(s

0

fv=yg)

X[fvg

p

succ. By

induction this means p

0

fv=yg + s

0

fv=yg). The simple substitution fy=vg is injective on

fn(p

0

) and so we may apply Proposition 3.3 to conclude p

0

fv=ygfy=vg + s

0

fv=ygfy=vg,

i.e. p

0

+ s

0

. 2

We next design a test e(s;B)

X

, where s 2 RAct

�

and B a �nite subset of N with the

property that whenever p + s and fn(p) � X

p must e(s;B)

X

() 8A 2 A(p; s) B \A 6= ;:

Note that the right hand side is trivially satis�ed if A(p; s) = ;. First let e(x); e(x)

denote the tests xy:!y:nil; x(y):!y:nil respectively, for any name y. Then we de�ne

e(s;B)

X

by induction on s:

1. e(";B)

X

=

P

f e(y) j y 2 B g

2. e(xy:s;B)

X

= 1:w + xy:e(s;B)

X[fyg

3. e(xy:s;B)

X

= 1:w + x(z): if z = y then c(s;B)

X

else ! where z is a new name

4. e(x(y):s; B)

X

= 1:w + x(z): if z 2 X then ! else e(sfz=yg; B)

X[fzg

where z is a

new name.

Proposition 3.13 If p + s and fn(p) � X then

p must e(s;B)

X

() 8A 2 A(p; s) B \A 6= ;:

17

Proof: The proof is by induction on s and again we examine only one case, when s has

the form x(y):s

0

First suppose that p j e(s;B)

X

p

succ and A 2 A(p; s). We must show that B\A 6= ;.

We know that p

x(y)

=) p

00

s

0

=) p

0

for some stable p

0

such that A = Subj(p

0

). Because y

may appear free in the test e(s:B)

X

we may not be able to use y in a communication

between the process and the test. So choose a new v and by Proposition 2.7 we have,

up to �-conversion, p

x(v)

=) p

00

fv=yg

sfv=yg

=) p

0

fv=yg. Moreover by Lemmas 2.4 and 2.5 and

Proposition 2.6 it follows that Afv=yg = Subj(p

0

fv=yg). Because v is new we now have

that, again up to �-conversion,

p j e(s;B)

X

�!

�

(v)p

00

fv=yg j if v 2 X then ! else e(s

0

fv=yg; Bfv=yg)

X[fvg

:

Here we have used an analogue to Lemma 3.11 for the tests, namely that (e(s;B)

X

)� �

�

e(�(s); B�)

X�

. From this it follows that p

00

fv=yg j e(s

0

fv=yg; Bfv=yg)

X[fvg

)

p

succ. So

by induction A

0

\ Bfv=yg 6= ; for every A

0

2 A(p

00

fv=yg; s

0

fv=yg). One such A

0

is

Afv=yg and so A \B 6= ;, because v is new.

Conversely suppose that for all A 2 A(p; s) A \ B 6= ;. We show that

p j e(s;B)

X

p

succ. We know that p # and the proof proceeds by induction on this fact.

Suppose p j e(s;B)

X

�! r. We must show that r

p

succ. If this move is because of an

internal move of either the process or the test we can apply induction or else the result

follows trivially by the construction of the tests. So we need only consider the case when

there is communication between the process and the test. We consider the case when

this is because of an application of the rule Close. The other possibility, when the rule

Com is used, is left to the reader. Then r must have the form

(v)(p

0

j if v 2 X then ! else e(s

0

fv=yg; Bfv=yg)

X[fvg

);

up to �-conversion, where p

x(v)

�! p

0

. It is su�cient to consider the case when v is not

in X when e�ectively any continuing computation is from p

0

j e(s

0

fv=yg; Bfv=yg)

X[fvg

.

So the result will follow by induction if we can show that for every A

0

2 A(p

0

; s

0

fv=yg)

A

0

\Bfv=yg 6= ;. One can show that any suchA

0

has the formAfv=yg where A 2 A(p; s).

Since A \ B 6= ; this implies A

0

\Bfv=yg 6= ;: 2

With these two proposition we can now prove the converse of Proposition 3.10 and

therefore the alternative characterisation of

<

�

.

Theorem 3.14 For every pair of processes p; q, p

<

�

q if and only if p� q.

Proof: We need only prove p � q implies p

<

�

q and this follows directly from the

previous two propositions. For example suppose that p + s, q + s and B 2 A(q; s

0

) where

s

0

is new. We derive a contradiction from the assumption that for all A 2 A(p; s

0

) A 6� B.

For each such A there must be some x

A

in A and not in B. Let L = f a

A

j A 2 A(p; s) g

and choose X so that it contains both fn(p) and fn(q). Then p must e(s

0

; L)

X

whereas

q need not always pass e(s

0

; L)

X

and this contradicts the fact that p

<

�

q. 2

18

This theorem also shows that the behavioural preorder

<

�

is determined by a small

collection of tests, namely all those of the form e(s;B)

X

or c(s)

X

. We call this set of

tests CTest and they will be used in the next section.

As an application of the alternative characterisation we show that

<

�

is preserved by

most of the operators of the language.

Proposition 3.15 For every operator op in � p

i

<

�

q

i

implies op(: : : ; p

i

; : : :)

<

�

op(: : : ; q

i

; : : :).

Proof: For the operator j it is best to prove this directly from the de�nition of

<

�

using the fact that p j q must e if and only if p must q j e. For the other operators is

is easier to prove the result for �. The only non-trivial case is for the binding operator

(y)�. As an example of the proof technique let us show that if p� q and (y)q * s then

(y)p * s. So without loss of generality we can suppose that (y)q

s

=) r where r ". If the

rule Open is not used in this derivation then r has the form (y)q

0

where q

s

=) q

0

. So

q * s from which it follows that p * s and therefore (y)p * s since y can not appear in

s. So suppose Open is used. Then the derivation can be viewed as

(y)q

s

1

=) (y)q

1

x(v)

�! q

0

1

fv=yg

s

2

=) r

where

q

s

1

=) q

1

xy

�! q

0

1

and v q
3.6 -1.68 g

4 Modelling the Language L

�

In this section we address the

Given such a natural interpretation, D, we can de�ne a semantic interpretation of L

�

following the usual approach of denotational semantics. We let Env

D

be the set of D-

environments, i.e. mappings from PV toD, ranged over by � and we assume an evaluation

function [[]]:BExp 7�! ftt;�g. Then the semantics of the language L

�

is given as a

function:

D[[]]:L

�

7�! (Env

D

7�! D)

and is de�ned by structural induction:

i) D[[X]]� = �(X)

ii) D[[op(t)]]� = op

D

(D[[t]]�)

iii) D[[recP:t]]� = Y �d:D[[t]]�[d=P]

iv) D[[if be then t else u]]� = D[[t]]� if [[be]] = tt

D[[u]]� if [[be]] = �

v) D[[x(y):t]]�= in

D

(x; �y:D[[t]]�)

where Y is the least-�xpoint operator for

X � (Y � Z) = (X � Y)� Z

X � Y = Y �X

X �X = X

X + (Y + Z) = (X + Y) + Z

X + Y = Y +X

X +X = X

X + nil = X

pre:X + pre:Y = pre:(X � Y)

x(y):X + x(y):Y = x(y):X � x(y):Y

xy:X + xy

0

:Y = xy:X � xy

the principal being a version of the interleaving law. Unlike the standard theories of

concurrency, such as that in [Mil89], the restriction operator can not be eliminated from

all �nite terms using the equations; this is a re
ection of the extra power of restriction

in the �-calculus. However the irreducible occurrences can be coded up as a form of

derived pre�x.

De�nition 4.6 If x 6= y then x(y)p is a shorthand for the term (y)xy:p and the subject

of the pre�x x(y) is

(X � Y) j Z = X

Lemma 4.9 If p # then there exists a hnf, hnf (p), such that `

r

p = hnf (p) and

j p j = j hnf (p) j.

Proof: It is virtually identical to that of Proposition 4.2.1 of [HI91] and is therefore

omitted. The only new ingredient is that in the subterms p

x

there is at most one

summand of the form x(y):p

0

. If during the reduction procedure two such summands are

generated then they can be replaced by one using the equations as follows:

x(y):p

0

+ x(z):p

00

= x:(w)p

0

fw=yg+ x:(w)p

00

fw=zg by �-conversion, where w is new

= (w)(

I

p � p

p � q; q � r

p � r

II

p

i

� q

i

; 1 � i � n

op(p

1

; : : : ; p

n

) � op(q

1

; : : : ; q

n

)

for every op 2 fxy:; (x);+;�; jg

Eq

p � q

for every instance of an inequation

�

p �

�

q

p � q

Input

pfz=yg � qfz=yg for all names z

x(y):p � x(y):q

If1

p � p

0

if be then p else q � if be then p

0

else q

q � q

0

operations are de�ned pointwise:

op(: : : ; I; : : :) = f op

P

E

(: : : ; e; : : :) j e 2 I g #

where S #

and it follows that C

E

[[x(y):b]] = f[x(y):b]g # : 2

Proposition 4.15 For every b 2 BF and process q `

r

b � q implies C

E

[[b]]� C

E

[[q]].

Proof: The proof follows from the property

`

r

b � q implies that there exists a d � q such that

for some m � 0 ` b � d

(m)

: (�)

This is proved by induction on the length of the proof of `

r

b � q and proceeds by

considering the last rule applied in the proof. There are only three non-trivial cases, the

Input rule, the Unwind rule and the Transitivity rule. As an example we look at the Input

rule. Here b; q have the form x(y):b

0

; x(y):p respectively and `

r

b � q has been inferred

because for all z)`

r

b

Lemma 4.18 For every test e 2 CTest p must e implies that there exists some b 2 BF

for any f :N 7�! C

E

.

Let f =

W

f

n

where f

n

is de�ned such that for all x 62 N

n

f

n

(x) =
 and for all

x 2 N

n

f

n

(x) is a compact element. This is possible because C

E

is an algebraic cpo.

Then in

C

E

(x; f) =

W

n

in

C

E

(x; f

n

). It is not di�cult to show that for each n

in

C

E

(x; f

n

) = f[x(w): if w 2 N

n

then f

n

(w) else
]g #

and therefore

in

C

E

(x; f) =

_

n

f[x(w): if w 2 N

n

then f

n

(w) else
]g # :

So

i

D

(in

C

E

(x; f)) =

_

n

D[[x(w): if w 2 N

n

then f

n

(w) else
]]

=

_

n

in

D

(x; �w: if w 2 N

n

then D[[f

n

(w)]] else ?)

=

_

n

in

D

(x; i

D

� f

n

)

= in

D

(x; i

D

� f):

2

These results show that at least there are reasonable models of the language and as

a byproduct we have a sound and complete proof system for the behavioural preorder.

This is obtained by adding !-induction to the proof system. Note that one can also

replace the in�nitary Input rule with the �nitary one suggested by Proposition 3.16 and

retain completeness. However CI

E

, the initial fully-abstract model constructed in this

section, is a term model and it would be more satisfactory if we had an independent

description of it, for example as some modi�cation of the acceptance trees in [Hen88].

The main di�culty here is to �nd a version of these trees which will support a reasonable

de�nition of the restriction operator (y).

Another de�ciency in this section is the general de�nition of what constitutes an

interpretation of the language. It would be more satisfactory if this took into considera-

tion the fact that the operator (y) also binds names. So in addition to having a special

way of interpreting the input operator, using the functions in

D

, we would also have a

special function for restriction. One suggestion would be to have a function res

D

of type

(N 7�! D) 7�! D and then to de�ne D[[(y)t]]� to be res

D

(�y:[[t]]�). With this de�nition

�-conversion would be sound in all interpretations. However it is di�cult to extend the

results of this section to this new form of interpretation. It seems that a more subtle

interpretation of restriction is required and one possibility is to adopt the approach taken

in [Win88].

References

[BD92] M. Boreale and R. DeNicola. Testing for mobile processes. In Proceedings

of CONCUR 92, 1992.

31

