
On the Decidability of Non-Interleaving Process

Equivalences

1

Astrid Kiehn

Institut f�ur Informatik, TU M�unchen

Arcisstr.21, D{80290 M�unchen

email: kiehn@informatik.tu-muenchen.de

Matthew Hennessy

Cognitive and Computing Sciences

University of Sussex

Falmer, Brighton BN1 9QH

email: matthewh@cogs.sussex.ac.uk

Abstract

We develop decision procedures based on proof tableaux for a number of non-

interleaving equivalences over processes. The processes considered are those which

can be described in a simple extension of BPP, Basic Parallel Processes, obtained

by omitting the restriction operator from CCS . Decision procedures are given

for both strong and weak versions of causal bisimulation, location equivalence and

ST-bisimulation.

1 Introduction

This paper is concerned with the development of automatic veri�cation techniques for

process description languages. Typically if P and Q are process descriptions we wish to

develop decision procedures for checking if P and Q are semantically equivalent. If P and

Q are expressions from process algebras or given in terms of labelled transition systems

then there are already a number of software systems which can automatically check

for such semantic identities, [CPS89, SV89]. The main semantic equivalences handled

by these tools are variations on bisimulation equivalence, [Mil89], and there is also the

major restriction that the processes to be checked must be �nite state.

More recently techniques have been developed for handling certain kinds of in�nite

state processes. For example in [CHS92] it was shown that strong bisimulation is decid-

able for context-free processes while [CHM93] contains a similar result for so-called Basic

1

This work has been supported by the ARC project An Algebraic Theory for Distributed Systems

1

Each of these three equivalences were originally de�ned using very di�erent meta-

languages for expressing and emphasising di�erent intentional features of the behaviour

of processes. In [Kie94] it is shown how at least the �rst two can be expressed in a

uniform framework and here we show that this framework can also be used to express ST-

bisimulation. This is central to our work. We develop one decision procedure based on a

tableau method for local cause bisimulation which from [Kie94] is known to be equivalent

to location equivalence, [BCHK93]. We then show how very simple modi�cations lead

to a decision procedure for global cause bisimulation, which is known to be equivalent

to

�nite subsets of C. Let BPP

l

(X) denote the set of extended processes. As usual the

variable x in rec x: t acts as a binder which leads in the standard manner to free and

bound occurrences of variables and a closed process is one with no free occurrence of any

variable. We also assume that all occurrences of x in rec x: t are guarded, (see [Mil89]

for a formal de�nition). We use p; q; : : : to range over CCS, the set of closed processes of

CCS(X) and P;Q : : : to range over BPP

l

, the set of closed processes in BPP

l

(X) . For

T 2 BPP

l

(X) let cau(T) be the set of causes, i.e. elements of C, occurring in T and

cs(T), the set of cause sets of T , i.e. the set of subsets of C occurring in T . Obviously

cau(T) = f l 2 � j � 2 cs(T) g. Within BPP

l

(X) we represent a CCS processes p as

; � p.

Throughout the paper we will use a structural congruence, � , over extended pro-

cesses. This is de�ned to be the least syntactic congruence generated by the equations

X j Y = Y j X;

X j (Y j Z) = (X j Y) j Z;

� � (X j Y) = � � X j � � Y;

� � (X + Y) = � � X + � � Y:

In other words we work modulo the commutativity and associativity of j and we

assume that � � distributes over the two operators j and +.

In this section we give a transition system which formalises the \local causality"

between the actions of processes. The natural bisimulation equivalence de�ned using

this transition system is the same as location equivalence, at least for the processes in

CCS, [Kie94]. The transition system is given in Figures 1 and 2, and it de�nes two

relations over processes from BPP

l

. P

a

����!

�;l

(lc)

Q means that process P can perform the

visible action a, the causes of this action being all the causes in � and all future actions

which have this occurrence of a as a cause will have l in their set of causes. On the other

hand P

�

����!

(lc)

Qmeans that P can perform an internal computation and be transformed

into Q. Notice also that each visible action, resulting from the application of the rule

(LG1), introduces a new cause l. So as a computation proceeds the actions occurring

in the computation are recorded as distinct causes in the cause sets of the process. The

characteristic � rule for local cause transitions is the rule for communication (L4). This

means that the causes of communications are not accumulated in the cause sets. (L4)

uses the somewhat non-standard notation P [;=l] to denote the result of replacing each

cause set � occurring in P by the cause set � � flg. More generally we will use P [�=l]

to denote the result of replacing each � containing l in P by (� � flg) [�.

1

For all a 2 Act , � 2 CS, l 2 C let

a

����!

�;l

(lc)

� (BPP

l

� BPP

l

) be the least binary

relations which satisfy the following axiom and rules.

(LG1) � � a:p

a

����!

�;l

(lc)

� [flg � p l 62 �

(LG2) P

a

����!

�;l

(lc)

P

0

; l 62 cau(Q) implies P +Q

a

����!

�;l

(lc)

P

0

Q+ P

a

����!

�;l

(lc)

P

0

(LG3) P

a

����!

�;l

(lc)

P

0

; l 62 cau(Q) implies P j Q

a

����!

�;l

(lc)

P

0

j Q

(LG4) � � p[rec x: p=x]

a

����!

�;l

(lc)

P

0

implies � � rec x: p

a

����!

�;l

(lc)

P

0

(LG5) P � P

0

; P

a

����!

�;l

(lc)

Q; implies P

0

a

����!

�;l

(lc)

Q

Figure 1: Visible Local Cause Transitions

The use of the structural congruence in the rules (LG5) and (L6) enables us to

have a relatively simple set of de�ning rules for the transition systems. For example

there is no rule which immediately applies to terms of the form � � (a:p j Q) by

virtue of its syntactic form. But (LG3) can be applied to � � a:p j � � Q and since

� � (a:p j Q) � � � a:p j � � Q the rule (LG5) can be used to infer the same transition

for � � (a:p j Q).

For every extended process P , every visible action a, location l and cause set � let

Der

�;l

(P; a) be de�ned as fQ j P

a

����!

�;l

(lc)

Qg. Because we assume that processes are

guarded these sets are always �nite. For exactly the same reason the set of � -derivatives,

Der(P; �) = fQ j P

�

����!

(lc)

Qg, is �nite. We also let S(P) denote the set of actions from

Act

�

which P can perform.

De�nition 2.1 [Local Cause Equivalence]

A symmetric relation R � BPP

l

� BPP

l

is called a local cause bisimulation i�

R � G(R) where

(P;Q) 2 G(R) i�

(i) P

�

����!

(lc)

P

0

implies Q

�

����!

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R

(ii) P

a

����!

A;l

(lc)

P

0

; l = new(cau(P) [cau(Q));

implies Q

a

����!

A;l

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R:

5

Let

�

����!

(lc)

� (BPP

l

� BPP

l

But since p is closed this reduces to

frec y:(w[p=x])g [Gen(p) [Gen(w)[p=x][rec y:w[p=x]=y]:

For the right hand side we have

Gen(p) [Gen(rec y:w)[p=x] = Gen(p) [(frec y:wg [(Gen(w)[rec y:w=y]))[p=x]

Therefore it remains to show Gen(w)[p=x][rec y:w[p=x]=y] � Gen(w)[rec y:w=y][p=x].

However these two sets are equal because p is closed. 2

For an extended process P we use Gen(P) to denote Gen(pure(P)) where pure(P)

is the CCS process obtained by erasing all cause sets from P . The next lemma shows

that the generators of extended processes are closed under transitions.

Lemma 2.4 If P

�

����!

(lc)

Q or P

a

����!

�;l

(lc)

Q then Gen(Q) � Gen(P).

Proof By induction on the derivation of transitions. The only di�cult case is when

the transition is inferred using the rules (LG4) or (L5). An immediate corollary of the

previous lemma is that Gen(t[rec x: t=x]) � Gen(rec x: t) and both these cases will then

follow by an application of induction. 2

It is very easy to see that the set of generators of any extended process P is �nite and

therefore the previous lemma gives us a representation theorem for the \state space" of

processes reachable from P . If we ignore cause sets then every such state is equivalent

to a parallel product of the generators of P . This is summarised in the next proposition.

Proposition 2.5 Let p 2 CCS.

1. The set Gen(p) is �nite.

2. There is a set K = fi

1

; : : : ; i

n

g with p

i

j

2 Gen(p) for all j 2 f1; : : : ; ng such that

p �

Q

k2K

p

k

.

3. If G is a set of generators and P 2 BPP

l

then the following holds:

Gen(P) � G and P

a

����!

�;l

(lc)

Q or P

�

����!

(lc)

Q imply Gen(Q) � G.

Proof The �rst two statements are easily shown by induction on the structure of p. The

third is a consequence of the previous lemma. 2

8

This result also shows that the class of processes we consider may be represented

by Petri nets. To construct a net equivalent to P we use as places the elements of

Gen(P). The transitions between places are de�ned using the operational semantics

of CCS. The initial marking is determined by parallel product of elements of Gen(P)

yielding P . Note, that this Petri net representation is not truly concurrent in the sense

of [Gol88] and [Tau89]. The term p � (a:nil j b:nil)+c:nil has as generator set Gen(p) =

fp; a:nil ; b:nil ; c:nil ;nilg. So the net for p contains initially one token on the place p

and none on the others. A truly concurrent Petri net for p would initially have at

least two tokens to enable the transitions for a and b concurrently. We use the Petri

net representation in a Section 5 to show that divergence of processes is decidable. As

this problem is independent of concurrent or dependent occurrences of transitions the

representation is su�cient for this purpose.

3 Ordering Processes

In this section we develop two distinct orderings on extended processes which will be used

in the decision procedure. Both are based on orderings on vectors of natural numbers.

Let IN

k

represent the set of vectors of

Now C is ordered as l

1

< l

2

< l

3

< : : : and this extends naturally to cause sets, �nite

subsets of C, again lexicographically. Let

fl

n

1

; : : : l

n

k

g < fl

m

1

; : : : l

m

k

0

g, where i < j implies n

i

< n

j

and m

i

< m

j

, if

there exists some j 2 f1; : : : ; k

0

g such that

1. n

i

= m

i

for every i < j

2. if j � k then n

j

< m

j

.

This is a total well-founded ordering on cause sets.

De�nition 3.1 If G is a �nite set of generators then a G-parform is any extended term

of the form

Q

j2J

�

j

� p

j

, where each p

j

is a polynomial over G, which satis�es i < j

implies �

i

< �

j

. 2

Lemma 3.2 For every extended process P such that Gen(P) � G there is a G-parform

Q such that P � Q.

Proof By structural induction on P . 2

Since the set of generators G is �xed for the remainder of the paper we will refer to

G-parforms as simply parforms and we use pf(P) to denote the parform to which P can

be reduced. This is a slight abuse of notation as P may be reduced to two parforms

which are not syntactically identical. But they will be equivalent up to the associativity

and commutativity of j and therefore they are \essentially" the same.

We now extend the ordering <

lex

to parforms. For any parform P :=

Q

i2I

�

i

� p

i

and any cause set � the vector �(P) is de�ned as follows:

�(P) =

8

<

:

�(p

i

); � = �

i

0 otherwise.

(Here 0 is the vector which consists only of 0s.) Note that this is well-de�ned for parforms

since every cause set appears at most once in these terms. This notation is used in the

following de�nition.

De�nition 3.3 ,

Proposition 3.5 Let P;Q;R be parforms with P <

lex

Q. Then

1. pf(P j R) <

lex

pf(Q j R),

2. if � is a cause set renaming preserving the natural order on cs(P) [cs(Q) then

�(P) <

lex

�(Q). 2

This is the �rst ordering required in the decision procedure. The second also comes

from an ordering on IN

k

:

for �; � 2 IN

k

let � � � if �

i

� �

i

for every 1 � i � k.

However we �rst use this ordering to induce an ordering on words over IN

k

:

For each v;w 2 (IN

k

)

�

let v � w whenever there is an injection f :

f1; : : : ; jvjg ! f1; : : : ; jwjg such that i

1

< i

2

implies f(i

1

) < f(i

2

) and

v[i] � w[f(i)]

where w[i] denotes the i

th

letter of w. The main property of this ordering is given by

Theorem 3.6 Let (u

i

)

i2IN

, u

i

2 (IN

k

)

?

be an in�nite sequence of words over IN

k

. Then

there exists some i; j 2 IN such that u

i

� u

j

.

Proof This is a variation on Higman's Theorem, [Lot83]. Assume that there exist in�nite

sequences (u

i

)

i2IN

, u

i

2 (IN

k

)

?

, such that u

j

6� u

i

whenever j < i. Using the axiom

of choice we can select an \earliest" of such sequences (x

i

)

i2IN

that is x

1

is the shortest

word beginning such a sequence, x

2

is the shortest word such that x

1

, x

2

is beginning such

a sequence and so on. The sequence (x

i

)

i2IN

contains an in�nite subsequence (x

i

j

)

j2IN

with x

i

k

[1] � x

i

l

[1] whenever k < l. Let w[2 : : :] denote the word w with the �rstQ

.

: : :

For example

f1g � (a:p) j f1; 2g � (b:nil j a:p)

�

f1g � (a:p j a:p) j f1; 2g � (c:nil) j f2g � (a:p j b:nil j c:nil):

because �(a:p) � �(a:p j a:p), �(b:nil j a:p) � �(a:p j b:nil j c:nil).

There is an alternative characterisation of this ordering:

Proposition 3.8 P � Q i� Q � Q

1

j Q

2

and there is a cause set bijection �: cs(P) �!

cs(Q

1

) preserving the natural order on cs(P) such that Q

1

� �(P).

Proof Let P

0

:=

Q

i2I

�

i

� p

i

and Q

0

:=

Q

j2J

�

j

� q

j

be G-parforms of P and Q

respectively.

First suppose that P � Q, i.e. !(P

0

) � !(Q

0

). Then there is an injection f : I �! J

such that i

1

< i

2

implies f(i

1

) < f(i

2

) and �(p

i

) � �(q

f(i)

) This means for each i 2 I

that q

f(i)

� p

i

j r

i

for some r

i

.

Let Q

1

; Q

2

denote

Q

i2I

�

f(i)

� p

i

and

Q

i2I

�

f(i)

� r

i

j

Q

j2Jnf(I)

�

j

� q

j

respectively.

Then Q � Q

1

j Q

2

, and the required bijection � : f�

i

1

; : : : ;�

i

jIj

g �! f�

f(i

1

)

; : : : ;�

f(i

jIj

)

g

is given by �(�

i

) := �

f(i)

.

The converse is similar. 2

4 The Decidability Algorithm

In order to decide for two processes P;Q 2 BPP

l

,where cs(P) = cs(Q), whether they

are local cause equivalent we build up a tableau T (P = Q). A tableau T (P = Q)

is a proof tree whose root is labelled P = Q and whose proper nodes (there are also

intermediate nodes, see below) are labelled with expressions of the form P

0

= Q

0

where

P

0

, Q

0

are extended processes whose generators are inGen(P)[Gen(Q) and which satisfy

cs(P

0

) = cs(Q

0

). Each rule for extending a tableau has the form

P = Q

P

1

= Q

1

; : : : ; P

n

= Q

n

with possible side conditions. Intuitively the premise of such a rule can be viewed as a

goal to achieve while the consequents represent su�cient subgoals to be established. We

distinguish between proper and intermediate nodes. All proper nodes in the proof tree

12

are either terminal or non-terminal and a proof tree can be extended by applying one of

the rules to a non-terminal node, thereby introducing n new nodes. It may be that the

application of a rule will violate the condition that labels must be of the form R = S

with cs(R) = cs(S). In such cases we can simply add a � � nil factor to R for each

� 2 cs(S) n cs(R) and similarly for S. Extended processes are considered up to �.

A node is terminal if it has one of the following forms:

� P = Q where P � Q; in which case the node

(UNWIND)

P = Q

fDer

�;l

(P; a) = Der

�;l

(Q; a)g Der(P; �) = Der(Q; �)

where l = new(cau(P)) = new(cau(Q))

� 2 cs(P) = cs(Q) and a 2 act(P) [act(Q)

(SUM)

fP

1

; : : : ; P

n

g = fQ

1

; : : : ; Q

m

g

fP

i

= Q

f(i)

g

i2f1;:::;ng

fP

g(j)

= Q

j

g

j2f1;:::;mg

where f and g are mappings f : f1; : : : ng �! f1; : : :mg

and g : f1; : : : ;mg �! f1; : : : ; ng

(SUBL)

�(P

1

) j P

2

= Q

�(P

0

1

) j P

2

= Q

where � is a cause set renaming which is

order preserving and bijective on cs(P

1

) = cs(P

0

1

) and there is a dominated

node labelled P

1

= P

0

1

or P

0

1

= P

1

with pf(P

0

1

) <

lex

pf(P

1

)

(SUBR)

Q = �(P

1

) j P

2

Q = �(P

0

1

) j P

2

where � is a cause set renaming which is

order preserving and bijective on cs(P

1

) = cs(P

0

1

) and there is a dominated

node labelled P

1

= P

0

1

or P

0

1

= P

1

with pf(P

0

1

) <

lex

pf(P

1

)

Figure 3: The Tableau Rules

14

2. it must dominate a node m labelled by P

1

= P

0

1

or P

0

1

= P

1

,

3. in the label on the dominated node it must be the case that pf(P

0

1

) <

lex

pf(P

1

).

The result of applying the rule is the generation of a new node labelled by �(P

0

1

) j P

2

= Q.

Note that as a result of the application of the rule the lexicographical order of the process

is decreased. This order, <

lex

, is

where A is a:P j f1g � nil = a:P j f1g � nil and empty cause sets have been omitted.

Since all terminal nodes are successful the tableau is successful, hence P �

lc

Q.

Theorem 4.2 Let P;Q 2 BPP

l

. Every tableau for P = Q is �nite.

Proof Let X = Gen(P) [Gen(Q). If the tableau is not �nite then |as it is �nitely

branching| it must contain an in�nite path. By Proposition 3.5 every application of a

SUB rule preserves the order <

lex

and since this order is well-founded this in�nite path

can not eventually only consist of applications of SUB. So there are in�nitely many

nodes, (n

i

)

i2IN

along a path to which rule UNWIND is applied. Let (U

i

= V

i

)

i2IN

denote the sequence of labels on these nodes.

We now consider the words over IN

jX j

generated by each pair U

i

; V

i

; !(U

i

); !(V

i

)

respectively. In fact it will be convenient to use words over the slightly larger set IN

jX j+1

and identify any vector � 2 IN

jX j

as the vector in IN

jX j+1

obtained by setting the last

component to 0. If we then encode the equality symbol = as a vector � 2 IN

jX j+1

with

�(i) = 0 for each generator position (i.e. for i � jXj) and �(jXj + 1) = 1 for the new

component then U

i

= V

i

can be represented as the word !(U

i

)�!(V

i

) over the alphabet

IN

jX j+1

. For convenience let !

i

denote this word which labels the node n

i

.

Now consider two nodes n

j

;n

k

, where j < k, which are labelled by the equations

U

j

= V

j

and U

k

= V

k

respectively. We show, by contradiction, that !

j

6� !

k

. Suppose

this is not the case, i.e. !

j

� !

k

and therefore both U

j

� U

k

and V

j

� V

k

Proof If P �

lc

Q then we can build up a tableau such that R �

lc

S for each proper

node labelled R = S. This is possible because the UNWIND rule directly reects the

operational semantics and when applying the SUM rules one can choose the functions

f; g in the appropriate way. Lemma 2.2 guarantees that the nodes introduced via an

application of the SUB rules also have this property. Hence the resulting tableau can

not contain unsuccessful nodes. Finally by Theorem 4.2 the tableau is �nite. 2

Proposition 4.4 (Soundness) If a tableau T (P = Q) is successful then P �

lc

Q.

Proof

Let R

�

denote the least set which contains � and

R = f(P;Q) j P = Q is the label of a proper node in the tableaug

and which is closed under the following operations:

1. (P;Q) 2 R

�

implies (P j R;Q j R) 2 R

�

for every R,

2. (P;Q) 2 R

�

implies (�(P); �(Q)) 2 R

�

for every cause renaming � which is bijec-

tive on cs(P)(= cs(Q)),

3. (P;Q) 2 R

�

; (Q;R) 2 R

�

implies (P;R) 2 R

�

,

4. (P;Q) 2 R

�

implies (P j � � nil ; Q) 2 R

�

and (P;Q j � � nil) 2 R

�

for any

� 2 CS.

Then R

�

is a local cause bisimulation. To prove this it is su�cient to check that for each

node label (P;Q) 2 R the moves from P can be matched by corresponding moves from

its partner, that is,

� P

�

����!

(lc)

P

0

implies Q

�

����!

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R

�

� P

a

����!

A;l

(lc)

P

0

; l = new(cau(P)[cau(Q)), impliesQ

a

����!

A;l

(lc)

Q

0

for someQ

0

2 BPP

l

with (P

0

; Q

0

) 2 R

�

.

This can be established by induction on the length of the sequence of uninterrupted

applications of SUB rules to a node.

17

case i = 0: In this case the node is either terminal |so we have P � Q and therefore

(P;Q) 2 R

�

| or rule UNWIND is applied to it in the next step. An application

of UNWIND is always followed by an application of rule SUM. The labels of

the nodes obtained from this application give the required matching moves (up to

adding � � nil components).

case i! i+ 1: Without loss of generality the label under consideration is of the form

(

Let

�

����!

(st)

� (ST � ST) be the least binary relation de�ned by the following axiom

and rules.

(L1) � � �:p

�

����!

(st)

� � p

(L2) P

�

����!

(st)

P

0

implies P +Q

�

����!

(st)

P

0

Q+ P

�

����!

(st)

P

0

(L3) P

�

����!

(st)

P

0

implies P j Q

�

����!

(st)

P

0

j Q

Q j P

�

����!

(st)

Q j P

0

(L4) P

a

����!

(st)

P

0

; Q

�a

����!

(st)

Q

0

implies P j Q

�

����!

(st)

P

0

j Q

0

(L5) � � p[rec x: p=x]

�

����!

(st)

P

0

implies � � rec x: p

�

����!

(st)

P

0

(L6) P � P

0

; P

�

����!

(st)

Q; implies P

0

�

����!

(st)

Q

Figure 4: Invisible ST Transitions

In the ST operational semantics of [AH93] communication consists of the simulta-

neous occurrence of complete actions and therefore we can not de�ne the required �

transitions using the rules in Figure 2; instead we need to de�ne it separately, along

the standard lines as in [Mil89]. As usual in order to de�ne the invisible transition,

�

These are obtained by abstracting from internal moves. We only outline the development

for local cause equivalence but it can be easily adapted for the other two. The weak local

cause transitions are de�ned as follows:

For a 2 Act let

a

====)

�;l

(lc)

be the least relation which satis�es

� P

a

����!

�;l

(lc)

Q implies P

a

====)

�;l

(lc)

Q

� P

a

====)

�;l

(lc)

Q

0

and Q

0

�

����!

(lc)

Q implies P

a

====)

�;l

(lc)

Q

� P

�

����!

(lc)

P

0

and P

0

a

====)

�;l

(lc)

Q implies P

a

====)

�;l

(lc)

Q

We also use

never evolve to a process which can diverge internally. Our decision procedure for the

weak equivalences will only apply to these terms. However at least this is a decidable

class:

Theorem 5.4 The predicate h-convergent is decidable over BPP

l

.

Proof

It is not too di�cult to see that P is h-convergent if and only if pure(P) is h-convergent

under the standard operational semantics where labels and causes are not mentioned.

Therefore it is su�cient to consider CCS processes in BPP. Any such process p can be

represented by the Petri net PN(p) constructed as follows:

� take Gen(p) as the set of places

� for each transition g

�

! q introduce a Petri net transition labelled � with g as the

only input place and the generators g

1

; : : : ; g

n

as output places, where q is equivalent

to a polynomial over fg

630 in Lecture Notes in Computer Science, pages 138{147. Springer{Verlag,

1992.

[CPS89]

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[SV89] R. De Simone and D. Vergamimi. Aboard auto. Report RT111, INRIA, 1989.

[Tau89] D.A. Taubner. Finite Representations of CCS and TCSP Programs by Au-

tomata and Petri nets. Number 369 in Lecture Notes in Computer Science.

Springer{Verlag, 1989.

[vGV87] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic

theories of concurrency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven,

editors, Prooceedings PARLE conference, number 259 in Lecture Notes in

Computer Science, pages 224{242. Springer{Verlag, 1987.

[VJ85] R. Valk and M. Jantzen. The residue of vector sets wit applications to de-

cidability problems in Petri nets. Acta Informatica, (21):643{674, 1985.

[Vog91a] W. Vogler. Deciding history preserving bisimilarity. In Proceedings of ICALP

91, number 510 in Lecture Notes in Computer Science, pages 495{505.

Springer{Verlag, 1991.

[Vog91b] W. Vogler. Generalized OM-bisimulation. Report TUM-I9113, Technische

Universit�at M�unchen, 1991.

[Vog92] W. Vogler. Modular Construction and Partial Order Semantics of Petri nets.

Number 625 in Lecture Notes in Computer Science. Springer{Verlag, 1992.

7 Appendix

We here show that ST -equivalence which has been introduced in [vGV87] for Petri nets

and in [AH93] for process algebras indeed coincides with the formalization we have given

in Section 5. The proof is only for the set of processes BPP considered in this paper

but it can be extended to whole of CCS in a straightforward way. We �rst outline the

de�nition of ST-equivalence as given in [AH93] and then compare it to our formalisation

given in Section 5.

ST processes are generated by the abstract syntax

P := t j F (a

l

):t j P j P

where t 2 CCS, a 2 Act and each index l occurs at most once in a term. Let ST

denote the set of these processes. It is often called the set of con�gurations or states as

26

it contains processes which have started some of their actions without having �nished

them. Each F (a

l

) stands for such an un�nished action. The index l serves to uniquely

identify particular executions of an action. For our comparison we simply choose l from

the set of causes C.

The transition systems for visible and invisible moves are given in Figure 7. Axiom

(S1) is only needed to be able to derive invisible action due to a communication. Transi-

tions of this kind are not directly considered when comparing processes. It is important

to note that these transition relations are only de�ned as relations over ST processes

where each index l occurs at most once. So, for example, the rule (S5) for parallel can

only be applied to an ST process whenever we are sure that the resulting term is also an

ST process.

The use of unique indices gives a slightly di�erent formulation than that in [AH93]

where it was only necessary to ensure that for each action a and each index l the pre�x

F (a

l

) occurs at most once. However our formulation enables us to give a much simpler

de�nition of

For each � 2 Act

�

and � 2 fS(a

l

); F (a

l

) j a 2 Act ; l 2 Cg let

�

!;

�

! � (ST � ST) be

the least binary relations satisfying the following axioms and rules.

(S1) �:p

�

! p

(S2) a:p

S(a

l

)

! F (a

l

):p l 2 C

Lemma 7.2 1. If P 2 ST then

(a) P

S(a

l

)

! P

0

implies lg(P)

a

����!

;;l

(st)

lg(P

0

),

(b) P

F (a

l

)

! P

0

implies lg(P)

a

����!

flg;k

(st)

lg(P

0

) for any k 2 C n cau(P),

(c) P

�

! P

0

implies lg(P)

�

����!

(st)

lg(P

0

).

2. If P 2 BPP

ST

then

(a) P

a

����!

;;l

(st)

P

0

implies st(P)

S(a

l

)

! st(P

0

),

(b) P

a

����!

flg;k

(st)

P

0

implies st(P)

F (a

l

)

! st(P

0

),

(c) P

�

����!

(st)

P

0

implies st(P)

�

! st(P

0

).

Proof By induction on the length of the proof of a transition. 2

The invariance of the two formalizations of ST -equivalence is now easily established.

It is an immediate corollary of the �nal proposition since a CCS process p is represented

in BPP by ; � p.

Proposition 7.3 1. If P � P

0

, P;P

0

2 ST , then lg(P) �

st

lg(P

0

),

2. if P �

st

P

0

, P;P

0

2 BPP

ST

, then st(P) � st(P

0

).

Proof Using the mappings st and lg a bisimulation of one set up can be translated

into the other. The preceding lemma guarantees that the resulting relations are indeed

bisimulations. 2

29

