
The SAGA Cross:

The Mechanics of Recombination for

Species with Variable-length Genotypes

Inman Harvey

CSRP 223, 1992

Cognitive Science Research Paper

Serial No. CSRP 223

The University of Sussex

School of Cognitive and Computing Sciences

Falmer

Brighton BN1 9QH

England, U.K.

This paper appears in:

R. M�anner and B. Manderick, editors,

Parallel Problem Solving from Nature 2, pages 269{278.

North-Holland, 1992



The SAGA Cross: The Mechanics of Recombination

for Species with Variable-length Genotypes

Inman Harvey

a

a

School of Cognitive and Computing Sciences, University of Sussex, Brighton U.K.

inmanh@cogs.susx.ac.uk

1. Introduction

Genetic Algorithms (GAs) have traditionally tended to use genotypes of a predeter-

mined �xed length. The designer of a particular GA, for use as an optimisation technique

within a given search space, decides which parameters are to be represented on the geno-

type, how they are to be coded, and hence the genotype length. For each parameter there

is a given position or set of positions on the genotype which unambiguously code for it.

This can be loosely translated as: the allele (parameter or feature value) for a particular

gene (parameter or feature) is coded for at a particular locus (genotype position). This

makes it simple for a recombination genetic operator, therefore, to take the same crossover

point in each parent genotype, and exchange homologous segments.

When variable-length genotypes (VLGs) are used, absolute position of some symbols

on the genotype can usually no longer be used to decide what feature those symbols relate

to. Some examples of ways around this problem are given in the next section. A related

problem is, how can one organise a recombination operator so that the resulting o�spring

genotypes are, �rstly, sensibly interpretable, and secondly, have inherited meaningful

`building blocks' from both parents.

VLG GAs have been proposed in various domains where they seem to allow a natural

genetic representation for the problem under consideration, and the variety of domains

is reected in the variety of representations suggested. In this paper the motivation for

needing VLGs is that of wanting to extend GAs so as to allow for open-ended evolution.

Although GAs have borrowed ideas from natural evolution to use in function optimisation,

what they have ignored is perhaps the most impressive feature of natural evolution: how

over aeons organisms have evolved from simple organisms to ever more complex ones, with

associated increase in genotype lengths. It has been suggested elsewhere that this feature

of evolution will need to be used in the only practical way of developing autonomous robots

[6, 10], and more generally this is an obvious approach to incremental design by evolution

of engineering systems. The SAGA framework was introduced in [7] to incorporate the

necessary extensions to standard GAs, and the present paper looks at the consequences

for a recombination operator.

It will be suggested that in this context the identi�cation of the locus of a `gene', or

that section of a genotype which codes for some particular feature, will necessarily be by

use of an identifying template. The problem for recombination becomes then, given a

randomly selected crossover point in one parent genotype, how to identify an appropriate



OVERCROSS OFFSPRINGPARENTS

round head

square head long legs short arms

short legs long arms

square head

round head

PARENTS OFFSPRINGCROSS OVER

Walkman long legs short arms

short legs long arms

Figure 1. A crossover operator which works well with �xed lengths may have sad conse-

quences when unthinkingly applied to variable length genotypes.

place to break the other parent genotype so as to exchange homologous sections as far

as is possible. In this we will be aided by the fact that within the SAGA framework the

genetic pool of a population will be largely converged to form a species or quasi-species;

as shown in [7] and briey summarised below.

As a matter of



This solution relies on the hierarchical tree-decomposition of the genotype, and would

not extend to genotype representations where the interactions between `building blocks'

cannot be so decomposed.

In Goldberg's Messy GAs, each locus on the genotype in e�ect carries its identi�cation

tag around with it. Instead of a crossover operator, cut and splice operators are used,

which allow genotypes of any length to develop over time. But the number of loci is �xed

at the start, and everything is in e�ect based on an underlying �xed-length representation,

which may be underspeci�ed or over-speci�ed. In the former case, where a genotype does

not contain an allele for every locus, the de�ciencies are made up by a `competitive

template' scheme. In the latter case, conicts can arise where the identity tag for a

speci�c locus occurs more than once with di�erent associated values; in this case an

arbitrary rule is used, such as choosing the one nearest a speci�ed end of the genotype. It

should be noted that the solution to the under-speci�cation problem relies on there being

a predetermined number of loci, and cannot be extended to arbitrary numbers of loci.

Harp and Samad use a linear genotype to code for a neural network by having building

blocks of a �xed length on the genotype code for the speci�cation of an individual layer

in the network, including the connectivity from that layer to other layers. The format for

each block is the same, but the number of them is not �xed. A crossover operator can

therefore be used which, when a crossover point in one parent genotype occurs inside a

block, ensures that the crossover in the other parent genotype occurs in the same position

within a block, thus exchanging homologous segm,







sense of searching around the current focus of a species for neighbouring regions which

are �tter, or in the case of neutral drift, not less �t. Such a search takes place through

application of genetic operators such as crossover, mutation or change-length. The latter

two operators are discussed in [6]. In this paper we concentrate on crossover.

5. Where to cross

When evolving systems of arbitrary increasing complexity within the SAGA framework,

it will be assumed that there are building blocks coded for along a linear genotype, and

that interactions between such building blocks are mediated by some addressing system,

as discussed earlier. For recombination it will be relevant that the population will be

largely converged; any two parent genotypes will be broadly similar.

The SAGA cross has therefore the requirements that, given any chosen crossover point

in one parent genotype, a crossover point in the other parent genotype needs to be chosen

so as to minimise the di�erences between the swapped segments. This can be rephrased

as: we should maximise the similarities between the two left segments that are swapped,

and between the two right segments that are swapped. Please note that the VLG crossover

problem that the SAGA cross handles only refers to the choice of the second complemen-

tary



The rationale behind this algorithm is as follows: The length of the longest common

subsequence of two strings A

1i

and B

1j

is to be written into L(i; j). If L(i � 1; j � 1),

L(i; j � 1) and L(i � 1; j) are known, then L(i; j) can be derived from them, the value

depending also on whether or not the i

th

symbol of A and the j

th

symbol of B match.

L(i; j) must be at least equal to the best of L(i�1; j) and L(i; j�1); and if the symbols

do match, then L(i; j) will be one better than L(i� 1; j � 1). Algorithm B keeps track of

the necessary amounts, and updates them within the j and i loops.

In Hirschberg's development, a further algorithm C is used to recursively use Algorithm

B, by dividing a given problem into two smaller problems, bottoming out of the recursion

when there are trivial subproblems. This is used to output the sequence which is the

LCSS of A and B. The purposes of the present paper are rather di�erent, and I have

developed an algorithm D to solve the VLG crossover problem.

The initial step is to add a feature to algorithm B so that it will work with substrings,

and equally well when comparing two strings enumerated from one end or from the other

end. For this it is necessary to explicitly pass as inputs the initial and �nal indices for

the substrings of A and B.

Algorithm D accepts input strings A

1m

and B

1n

of lengths m and n, and an integer

c which represents the crossover



B-E-C-D-C-D-F

ABC-DCEF

2

3

4

4

5

4

4

3 3 2 2 1

3

3

3 2 2 1

2 1 1

2 1 1

2 2 1 1

2 1 1 1

1 1 1 1

0 0 0 0210

210

210

210

210

110

110

000

BECDCDF

BECDCD

BECDC

BECD

BEC

BE

B

-

-

F

DF

CDF

DCDF

CDCDF

ECDCDF

BECDCDF

FECDCBA

Figure 4. Algorithm D on ABC-DCEF (cross between C and D) and BECDCDF (best

cross to be determined). On left, algorithm B gives in column C best scores matching

substrings against ABC. On right, working backwards, best scores in column D. Central

column shows best total (5 matches) given by splitting BEC-DCDF.

will decrease with occasional level stretches.

The purpose of lines 6 and 7 is to monitor this, and to store in M the values of i for

the current best, or several best-equal, values of t. Hence when the loop �nishes, the �rst

s values in M contain the proposed crossover positions for maximising t, the sum of left

and right LCSSs.

It is then possible to select at random one of the optimal positions, and return this as



7. Computational requirements

This





14 Thomas S. Ray. An approach to the synthesis of life. In J.D. Farmer, C.G. Langton,

S. Rasmussen, and C. Taylor, editors, Arti�cial Life II. Addison-Wesley, 1992.

15 David Sanko�. Matching sequences under deletion/insertion constraints. Proceedings

of the National Academy of Science, USA, 69(1):4{6, 1972.

16 Stephen F. Smith. A Learning System based on Genetic Adaptive Algorithms. PhD

thesis, Department of Computer Science, University of Pittsburgh, USA, 1980.

17 R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal of

the A.C.M., 21(1):168{173, 1974.

Appendix

#include <stdio.h>

#include <string.h>

#define MAXLEN 1000 /* Max length of genes */

#define max(a,b) ((a)>(b) ? a : b)

/***********************************

A and B



{

last=1-(this=last); /* flip this/last */

for (j=0;j<lenb;j++)

K[this][j+1]=

(A[i]==B[(fwd==1 ? j : lenb-j-1)] ?

/* are the chars matching ? */

K[last][j]+1 : /* yes or */

max(K[this][j],K[last][j+1]));

/* no */

}

/* internal calculations finished;

copy into output */

for (j=0;j<lenb+1;j++)

L[j]=K[this][j];

}

12





/***********************************

Test program to read in file containing 2

gene strings, choose a random crossover point

in first, and select appropriate crossover

point in second.

***********************************/

main()

{

FILE *fp;

char gene1[MAXLEN]; /* strings for genes */

char gene2[MAXLEN];

int len1,len2; /* lengths of genes */

int i,j,k,displace1,displace2;

int cross1,cross2; /* crossover points */

fp=fopen("genefile","r");

fscanf(fp,"%s",gene1);

fscanf(fp,"%s",gene2);

fclose(fp);

len1=strlen(gene1);

len2=strlen(gene2);

/* make sure cross1 is within gene1 */

cross1=1+(random()%(len1-1));

cross2=algd(gene1,gene2,len1,len2,cross1);

printf("\n%d %d\n",cross1,cross2);

}

14


