


de�nite Hessian. Nonetheless they an be applied to minimize general funtions.
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Mini-

mization of a quadrati funtion



Estimating the urvature f

00

(0) by di�erening �rst derivatives gives

f

00

(0) � s

n

�

rE(





The algorithm

The algorithm an be stated as follows:

0. hoose weight vetor w

0

, salars �

0

> 0, �

0

> 0, � � 0 and initialize searh diretion:

g

0

= rE(w

0

)

s

0

= �g

0

suess = true; S = 0; n = 0

1. if suess = true alulate �rst and seond order diretional derivatives:

�

n

= s

n

� g

n

(diretional gradient)

if �

n

� 0, set s

n

= �g

n

; �

n

= s

n

� g

n

; S = 0

�

n

= s

n

� s

n

; �

n

=

�

n

p

�

n



n

= s

n

�

rE(w

n

+ �

n

s

n

)�rE(w

n

)

�

n

(diretional urvature)

2. inrease the working urvature: Æ

n

= 

n

+ �

n

�

n

3. if Æ

n

� 0 make Æ

n

positive and inrease �

n

:

Æ

n

= �

n

�

n

�

n

= �

n

�



n

�

n

4. alulate step size and adapt �:

�

n

= �

�

n

Æ

n

�

n+1

= �

n

�

�

n

�

n

�

�

5. alulate the omparison ratio:

�

n

=

2[E(w

n

+ �

n

s

n

)�E(w

n

)℄

�

n

�

n

suess = �

n

� 0
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6. if �

n

< 0:25, set �

n+1

= minf�

n

+

Æ

n

(1� �

n

)

�

n

; �

max

g

if �

n

> 0:75, set �

n+1

= max f�

n

=2; �

min

g

otherwise, set �

n+1

= �

n

7. if suess = true then adjust weights:

w

n+1

= w

n

+ �

n

s

n

g

n+1

= rE(w

n+1

)

S = S + 1

else leave weights unhanged:

w

n+1

= w

n

g

n+1

= g

n

8. hoose new searh diretion:

if S = S

max

restart algorithm in diretion of steepest desent:

s

n+1

= �g

n+1

suess = true; S = 0

else

if suess = true reate new onjugate diretion:

�

n

=

(g

n

� g

n+1

) � g

n+1

�

n

s

n+1

= �g

n+1

+ �

n

s

n

else use urrent diretion again:

s

n+1

= s

n

�

n+1

= �

n

; �

n+1

= �

n

; �

n+1

= �

n

; 

n+1

= 

n

9. if kg

n+1

k < � return w

n+1

as desired minimum, else go to 1 with n = n+ 1.

6



Notes on the algorithm

0. �

0

= 10

�3

is satisfatory though not ritial if � > 0. If a non-zero value of � is

hosen then � = 0:05 or � = 0:1 are reommended. The initial value of � is not

ritial though �

0

= 1 is a natural hoie. The algorithm starts in the diretion of

steepest desent.

1. Apart from the initial yle, this step is only exeuted if the last yle sueeded in

error redution. Otherwise no hange in the weight vetor has been made and this

information is already known. Neither the Hestenes-Stiefel formula nor the Polak-

Ribi�ere formula guarantees that s

n

is a desent diretion, though usually it is. If

�

n

� 0, a restart is made in the diretion of steepest desent for whih �

n

= �g

n

�g

n

is negative, otherwise the algorithm would have terminated at the last step of the

previous yle, assuming the two-norm is used.

3. After this step, Æ

n

= 

n

+ �

n

�

n

as before, but with the new value of �

n

.

5. Remember that �

n

< 0. The hoie of �

n

� 0 rather than �

n

> 0 is deliberate.

It safeguards against the algorithm getting stuk owing to limited oating-point

preision. An alternative is to restart in the diretion of steepest desent after a

given number, 10 say, of onseutive failures.

6. �

n

must stay in the range 0 < �

n

< 1, otherwise no further resaling is possible.

�

min

and �

max

an be of the order of the smallest and largest



funtion evaluationE(w

n

+�

n

s

n

) though it is worth performing the full gradient evaluation

rE(w

n

+ �

n

s

n

) at this stage. If an error redution results, w

n

+ �

n

s

n

will beome the

new weight vetor w

n+1

in step 7 and rE(w

n+1

) will then already be known. If no error

redution ours, the extra omputation will have been wasted. On the other hand, if

an error redution does our, the work involved in alulating only the funtion value

E(w

n

+�

n

s

n

) in step 5 will have to be redone. Assuming that suesses are more ommon

than failures, it is better on average to alulate the gradient in step 5. Note that at the

end of the yle both E(w

n+1

) and rE(w

n+1

) are known.

All other signi�ant alulations in a yle are inner produts. Eah requires N mul-

tipliations and additions, where N is the number of weights. This is omparable to a

forward pass of a single pattern. If P � 1, where P is the number of patterns in a bath,

the ost of the inner produt alulations is not signi�ant.
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