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Abstract



with which the models can be simulated or built in available hardware is an important

factor, and appropriate simpli�cations are made. In either case, it is important to note

that the `simpli�cation' is made for our convenience: the ann is easier to construct or

understand. The problem with this approach is that in using simpli�ed models, we may

actually be making



extended form of genetic algorithm, known as saga. Whereas most genetic algorithms

are essentially performing optimisation in a �xed parameter space, saga allows for the

dimensionality of the
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Figure 1: Schematic block diagram showing operations within a single model neuron. See text for

further explanation.

the form:

U(x) =

(



2.2 The Genetic Encoding

To enable the use of saga, the network architecture has to be encoded as a `gene'. In

our work to date, we have used a genetic encoding scheme



3 Evolving a Visually Guided Robot

Here we briey present some recent results. We attempted to evolve networks for a simple

adaptive behaviour, which was for a simulated

1

visually guided robot to spend as much

time as possible in the centre of a circular arena. The robots have two independent

drive-wheels and a third free-wheel. The drive wheels may go at either full or half speed,

either forwards or reverse, so the robot is capable of rotating on the spot, or travelling in

wider-radius circles, or in straight lines, or stopping still.

Each robot had six tactile sensors: two `bumpers' (at front and back), and four

radially symmetric wire `whiskers'. The tactile sensors are primarily of use in detecting

collisions with walls of the arena, and appropriately reorienting. The robot also has two

directionally-sensitive photoreceptors, which allowed it to visually sense its environment

(the walls of the simulated arena are dark, while the oor and ceiling are light).

Each individual robot was positioned at a randomly chosen point near the edge of the

arena, in a random orientation. The robot then had a �xed �nite `lifetime', in which it

had to get as close to the centre of the arena as it could, and then stay there. The robot's

performance was evaluated by taking the gaussian function of a discrete temporal integral

of its distance from the arena-centre during its lifetime: the higher the evaluation function,

the more time the robot spent at or near the centre. As is demonstrated in [4], this is

su�cient to evolve controllers for visually-guided behaviours: no explicit speci�cation of

visual processing is required.

We created a population of 60 robots with initially random genes, and evaluated each

one over eight `lifetimes'. At the end of the evaluation, we took the robot's worst score

as a measure of its performance (best and average scores are too often deceptively high).

When all 60 robots had been evaluated 8 times, the genes of the higher-scoring robots

were `inter-bred' using saga principles to create a new generation of 60 individuals. We

repeated this process for 100 generations.

The typical behaviour of a robot controlled by an evolved network is that it �nds its

way to the centre of the circular arena, and then stays there by spinning on the spot. This

is a perfectly acceptable strategy, given that the robots were evaluated only on the basis

of how much time they spent at the centre, and not on the basis of how much energy they

used. In this paper, we will consider two of the best evolved robot controller networks,

referred to as C1 and C2. The architectures of the two networks are shown in Figures 2

and 3. Typical behaviours exhibited by the robots controlled by these networks are shown

in Figures 4, 5, and corresponding time-plots of sensor inputs, internal



section discusses our �ndings from studies of varying the amount of internal noise in the

neuron model.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FB

BB

FRW

BRW

BLW

FLW

Left Eye

Right Eye



Figure 4: Typical behaviours of the robot controlled by evolved networks. The �gure shows a top-down

view of the circular arena; the robot's



Figure 6: Time-plots of sensor, motor, and internal activation values for the C1 behaviour plotted in

Figure 4. From top, graphs show: robot's velocity; distance of robot from centre of arena; visual input

to left eye; visual input to right eye; output of motor for left wheel; output of motor for right wheel;

excitatory output of the model neurons (\units") in the network.
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Figure 7: Time-plots of sensor, motor, and internal activation values for the C2 behaviour plotted in

Figure 5. Display format as for Figure 6.
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4 Varying the Noise

As was mentioned above, each robot is monitored for the same �xed amount of time,

during which its �tness value is calculated. For further details of this process, see [3].

For the purposes of this discussion, it is su�cient to note that, if the robot spent all its

time at the centre, it would receive a score of 100. But, because each robot's randomly

chosen initial position is always some distance from the centre, this maximum score can

never be reached: an optimum controller would score about 85 points. A robot which

never moved would score less than one.

For the C1 and C2 controllers, after 100 generations of evolution, both networks

managed an average score of around 65 (peak scores were nearer 80). These are the

scores obtained with internal noise n = 0:1 injected in the model neurons. Both networks

were then tested with di�erent values of n, varying from n = 0 (i.e. no noise) to n = 1:0

(i.e. noise uniformly distributed in the range [�1:0; 1:0]). For each value of n, the network

was evaluated 80 times, and the average score taken. Results from these tests are shown

in Figure 8.
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Figure 9: Typical behaviour resulting from using C1 with varying levels of internal noise. Display

format as for Figure 4. At the top, on the left noise �0:2, on the right �0:4. Below, on left �0:6, on right

�0:8.

4.1 Discussion

Further examination of the results indicates that the drop in performance when noise

is eliminated is due to the recurrent dynamical nature of the networks: the recurrency

implies that the network architectures contain feedback loops at a number of levels. That

is, it is common to see a unit with connection(s) to itself, or two mutually excitatory units,

or cycles of excitatory links incorporating several units. In such cases, low levels of internal

noise may build up over time by a process of accumulation through feedback loops.

However, because the noise distribution is centred on zero, it is also possible that these

high levels of activity could then



works, the drop in average performance was due to an increase in the number of near-

zero scores: peak scores were still high, but under certain conditions the absence of noise

allowed the activity in the network to fall to such an extent that the robot was rendered

immobile. Put more formally, the noise helps the state trajectory of the controller system

from becoming trapped on attractors which correspond to inactivity or unproductive be-

haviours. In this sense, it is realistic to describe the networks as using noise to produce

useful behaviours.

This is a signi�cant issue: if networks evolve to take advantage of internal noise, then

it is important to ensure that the internal noise used in simulation (i.e. during evolution)

closely matches the true noise levels that will be found when the evolved controller is put

into use. In our current work, this is something of a non-issue because the real robot

can be controlled by evolved networks simulated in the same manner as was employed

in evolution, using the robot's on-board microcomputer. However, if our methods are

used to develop control networks which will be realised in hardware, with each model

neuron implemented as an electronic circuit, then it is essential that a fairly precise

characterisation of the tolerances and internal noise distributions of the model neuron

circuit should be incorporated in the evolution simulation.

5 Conclusion

Our work is motivated by concerns that prior network models may have been over-

simplistic, and have not paid su�cient attention to the generation of adaptive behaviour.

We have demonstrated that, using a neuron model with elementary dynamics, recurrent

networks can exhibit rich dynamical activity that is not unduly hampered by noise,

and can be used for evolving controller networks that generate adaptive behaviour. We

have presented results which indicate that the networks use noise to avoid the e�ects

`unproductive' attractors can have on the state trajectory of the controller network. The

evolved networks have a distinctive appearance, in that they do not resemble networks

designed by humans. As far as we know, we are the only research group who have

successfully employed truly incremental evolution in creating dynamic recurrent networks

for the generation of adaptive behaviour. We expect that our techniques will, as time

progresses, become standard practice.
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