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Abstract

Enquiries into the possible nature and scope of innate knowledge never

proceed in an empirical vacuum. Instead, such conjectures are informed by a

theory (perhaps only tacitly endorsed) concerning probable representational

form.  Classical approaches to the nativism debate often assumes a quasi−

linguistic form of knowledge representation and delineate a space of options

(concerning the nature and extent of innate knowledge) accordingly.  Recent

connectionist theorizing posits a different kind of representational form, and

thus determines a different picture of the space of possible nativisms.  The

present paper displays this space and focuses on an especially interesting sub−

region labelled "Minimal Rationalism".  The philosophical significance of the

minimal rationalist option is explored.  Two consequences which emerge are first,

that the apparently clear distinction between innately specified knowledge and

innately specified structure is shown to be unproductive; and second, that there

may exist tracts of innate knowledge whose content is not propositionally

specifiable.

0. Nativism. Why worry?

Sometimes trivial, usually fruitless, the Nativism/non−Nativism debate

generally ends not with a conclusion but with a whimper.  All parties agree

that something important is present in us without being the product of genuine

individual learning.  All that then remains is to determine what. And that, as

has been vigorously argued in the past (e.d. Fodor (1980)) is in the end ans0 0 10 sly frthen 198 speciorthats
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remainder of the paper, however, tries to push the new debate a little

further.  Thus section 4 introduces (with some simulation results) a largely

unnoticed (but see Karmiloff− Smith (1992a)(1992b)) yet potentially highly

significant possibility which I term ’Minimal Rationalism’. A minimally

rationalist innate endowment involves the (domain−specific) pre−setting of

tiny but vital information−processing parameters which, in a delicate

co−operation with predictable environmental inputs, result in the acquisition

of specific items of knowledge.  To understand the nature of such minimal

endowments we need to use a new set of tools.  Instead of conceptualizing any

genuine innate knowledge as consisting in familiar kinds of conceptual or

propositional content, we need to move towards a more ’geometric’

understanding.  In particular, we need to exploit the idea of an error surface

determined by the setting of numerical parameters in a high−dimensional space.

The specification of innate knowledge, I shall argue, will often consist

(necessarily!) in the fixation of a favourable position on such an error

surface. Once we thus expand our notion of innate information beyond the

realms of what is in−principle propositionally specifiable, it becomes

increasingly difficult (section 5) to separate questions concerning the innate

structure (e.g. the local architecture (of layers, modules etc.)) of a

computational subsystem from questions concerning innate knowledge. Classical

treatments of the nativism debate could support such a separation since they

allowed a sharp distinction between computational profile (algorithm and data)

and implementation (the underlying physical device).  Connectionist approaches

erode that distinction and hence blunt the difference between structure,

algorithm and information.

1. Nativism and Representational Form

It is no accident that much of the historical debate concerning the pros

and cons of nativism revolved around the notion of an innate idea. For talk of

ideas, vague thought was (and is) nonetheless reflected the best available

theory of that in which our mature knowledge might consist. And our conception

of the potential nature of any innate endowment was, by default, modelled on

our conception of the nature of the mature product.

In talking of innate ideas in the mind, we are not yet forced to

consider questions concerning any possible physical vehicles for those ideas.

In these more rampantly physicalist times, however, questions concerning the

possible contents of tracts of innate knowledge have been inspired not just by

a vision of the contents of the mature product but also by a vision of the

form of their inner vehicles. The clearest example of this line of influence

is seen in the works of Jerry Fodor.

Fodor subscribes to what I shall call ’Bipartite Nativism’. Such a

nativism ascribes two types of innate endowment to the human neonates. These

are:

1.    An innate (but peripheral) system of processing modules which are

significantly structured so as to promote the acquisition of specific

skills (e.g. grammar acquisition).

(see Fodor (1983)).

2.    An innate (and central) corpus of representational atoms (which includes

atomic items corresponding to most lexical concepts and which merely

require triggering by exposure to appropriate environmental stimuli).

(see Fodor (1975), (1980), (1987)).

Fodor thus subscribes to both a kind of ’gross architectural’ nativism

(for the modules) and a ’symbolic nativism’ (for central processing).

In the following sections I shall try to articulate a very different

picture. It is a picture in which the image of the form of representation of

mature knowledge (of the kind which Fodor would ascribe to ’central

processing’) is very different.  This difference, I shall argue, leads us to
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P.S.Churchland and T.Sejnowski (1992) pp.106−7) gently leads the network in

the direction of an assignment of weights which will support the target

input−output mapping and (usually) will generalize to deal with new cases of

the same type (e.g. a net trained to map coding for written text to coding for

phonemes will then perform the mapping for text on which it was not

specifically trained − see Sejnowski and Rosenberg 1986) (1987)).

Even such a summary sketch succeeds (I hope) in displaying the genuine

distance which separates these connectionist models from their classical

cousins. Where classicists were tempted (maybe even forced − see Fodor (1975))

to posit a system of innate symbolic atoms and significant innate

architectural structures (the modules of Fodor (1982)) the connectionist may

appear ready to reject both: to insist on a single network of units and

weights and to begin with random weights and hence no ready−made set of

symbolic atoms.  But this, as other commentators have rightly pointed out (see

e.g. Churchland (1989), Karmiloff− Smith (1992a), Narayanan (1992) would be

way too hasty.  The connectionist (like everyone else from behaviourists

upwards − see e.g. Quine (1969) p.96) must often be a nativist too. But the

empirical details of the connectionist approach determine a space of nativist
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beak, can trigger an entire complex behavioural pattern in an animal − the

pattern is not plausibly viewed as learnt by some rational means involving

reflection on the stimulus −an extreme case of the ’poverty of the stimulus

argument’!). Real learning for Fodor, occurs only later, when a system can use

existing representational resources to formulate a hypothesis (e.g. about the

meaning of a lexical item) and test it against future experience.

A connectionist network which begins life with a random set of weights

(and no−task−specific fancy architecture, see section 5 below) and learns a

generalizable mapping by exposure to a set of training cases, amounts, I

claim, to a case in which we have genuine learning without innate symbolic

atoms.  It is genuine learning because the acquired mapping is specified in

and acquired in virtue of, the specific inputs to which the net is exposed.

It is not like merely triggering a knowledge representation already present in

the net.  And the learning is achieved without relying on the ’contents’ of

whatever random motivation patterns the net was initially disposed to produce

in its efforts to acquire the target mapping.  To establish this last point

reflect (1) that the initial weight assignments, being random, may embody no

usable knowledge at all and (2) that the process of weight change is not a

process in which existing representational elements are concatenated to

express putative target knowledge items.

It is easy to miss this powerful result.  It escapes notice if we adopt

a common misreading of Fodor’s claim.  The misreading depicts Fodor as

claiming only that representational potential cannot increase (which is surely

true) and that learning involves the testing of hypotheses.  It is then all

too easy to visualise the network as performing a kind of numerical

’hypothesis generation and test’ in which

the test is the measure of network performance (such a s sum−

squared error) and the procedure for generating new hypotheses,

given the successes or failures of past hypotheses, is given by the

learning algorithm.

Christiansen and Chater (1992) p.42.

The point to notice, though, is that the network’s early ’hypotheses’ are not

framed using a set of symbolic atoms nor (a fortiori) is the potential

representational scope of the network bounded by the representational power

(under processes of expressive recombination) of such a set of initial

representational atoms.

To repeat then, the Tabula Rasa case provides a genuine existence proof

of the ability of some systems to engage in rational knowledge acquisition

without an innate representational base. Yet they do not acquire knowledge by

accident, or by simple triggering. For they learn what they learn as a

consequence of the specific contents of the training set.  in passing, note

that the connectionist is thus able to offer a genuinely empiricist vision of

learning which is nonetheless not (pac− Fodor (1980) p.279) committed to the

use of hypothesis generation and test defined over a set of antecedent (hence

unlearned) symbolic atoms.

The existence proof of rational knowledge acquisition without any innate

representational base in place, we move on to probe the more empirically

plausible regions in the space of connectionist nativisms. This subspace

(between the Tabula Rasa and the Connectionist Classical Device) has recently

been divided (Narayanan (1922)) into two parts.  One part encompasses various

forms of what Narayanan (after Fodor (1983)) calls ’Architectural Nativism’

viz. the innate specification of gross structural properties such as division

into modules etc.  The other part encompasses what Narayanan (op.cit.p.80)

calls "Representational Nativism’ viz. a nativism of contents or methods of

representation. The basic idea is that the stored connection weights

constitute the knowledge of a network and hence that pre−setting these amounts

to building in real knowledge.  Whereas the gross arrangement of units and

weights (numbers of units, of layers, modules etc.) constitutes the form of

the processing device. Pre−setting these amounts to building in real

knowledge. Whereas the gross arrangement of units and weights (numbers of
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pre−structuring is to promote a certain problem decomposition: an effect which

can also be obtained by manipulating training data or short−term memory.  It

can also (see section 4) be obtained by evolving weights which enable the net

to reorganize the training data for itself!

In and of themselves, these functional equivalences, though initially

surprising, are not evidence of anything genuinely unfamiliar.  It is a

commonplace of the classical paradigm that a given input−output behaviour may

be achieved either by ’hard−wiring’ the system (directly manipulating the

processor) or by creating a program (manipulating the representations). It is

therefore important to see that the connectionist equivalences just sketched

flow from a different, and deeper source. For what underlies these

equivalences is, I believe the profound interpenetration of representation and

processing with the connectionist paradigm. It is worth pausing to clarify

this.

The fundamental root of the equivalences (between hand−coding, data

manipulation and gross structural pre−organization) lies in the fact that

connectionist models do not embody a firm distinction between representation

and processor.  Processing in these systems involves the use of connection

weights to create or re−create patterns of activation yielding desired

outputs. But these weights, as we saw, just are the network’s store of

knowledge. Changes to the knowledge base and to the processing device (the web

of units and weights) thus go hand in hand. As McClelland, Rumelhart and

Hinton put it:

The representation of the knowledge is set up in such a way that

the knowledge necessarily influences the course of processing.

Using knowledge in processing is no longer a matter of finding the

relevant information in memory and bringing it to bear: it is part

and parcel of the processing itself.

McClelland, Rumelhart and Hinton (1986) p.32.

the web

of unitvoleltioes

t inakoce(1986) p.32.)Tj
−54hfyInesketchme of’mctio1 Thiteact e’. Onand brinoctly h.





May 6 12:20 csrp270 9

Instead of building in large amounts of innate knowledge and

structure, build in whatever minimal set of biases and structure will

ensure the emergence, under realistic environmental conditions, of

the basic knowledge necessary for early success and subsequent

learning.

Two comments before proceeding to examples and discussion. First, I here

use the term ’Minimal Rationalism’ for the doctrine labelled ’minimal

nativism’ in Clark (forthcoming−a). The reason is simple: minimal rationalism

better captures (for reasons just developed ) the detailed flavour of the

proposal. And it distinguishes the position form the one marked by Ramsey and

Stich’s (1991) use of ’minimal nativism’ as a label for a very different

doctrine.  Second, the kind of possibility I have in mind is already remarked

by e.g. Carey (1990) who notes that one alternative to e.g. the suggestion

that knowledge of persons is innate is to assume innate knowledge of something

more minimal which will, int he child’s real environment, rapidly lead to the

development of the target concept. Such a minimal endowment might consist in a

special interest in events which involve a contingent reaction to the child’s

own actions. Since other people are the main source of such contingent

reactions, this would in effect direct the child to attend preferentially to

interactions with persons (see Carey (1990) p.166).

Connectionism’s special contribution to understanding the space of

minimal rationalism lies in its easy ability to combine data−driven induction

and tiny domain−specific biases which help drive the inductive process in a

desired direction. A clear example of this, which also introduces the

important notion of an error surface, is the famous problem of exclusive−or

(XOR).

The exclusive−or problem is simply this: find a network which, if

trained on a database of cases in which the input−output mapping is given by

the truth table for exclusive−or, will learn to compute that function, i.e. to

output true if and only if at least and at most one of the disjuncts is true.

The famous complication here is that no simple two−layer net (comprising two

input units and one output unit corresponding to the inputs and outputs

specified by the truth table) can learn to solve this problem.  This is l inton



May 6 12:20 csrp270 10

vertical, say) represents amount of error. the other axes (the horizontals,

one per connection) represent the weights.  The values of all the weights at a

given time determine a specific overall error and hence a specific point

relative to this error landscape.  When the weights change, the location of

this point changes. The goal is to move the point to a location at which the

error is as small as possible.

For some problems, such an error surface has a simple, basin−like shape

with a single minima.  In these cases an error minimization procedure, such as

that provided by back propagation, is guaranteed to find the best solution as

it will drive the point (defined by the weights) downhill, reducing error at

each step and hence bringing the net ever closer to the bottom of the basin.

Other problems, however, define rather different and more problematic

surfaces.  Thus imagine an error surface whose shape is not a concave basin

but instead is more like a mountain range with several peaks and intervening

troughs of varying depths.  The minimal possible error corresponds to the

deepest trough. But a particular set of initial weights may determine a point

in weight space which is separated from that deepest trough by one or more

intervening (less deep) troughs. To reach the target, these troughs and the

uphill slopes which follow them, need to be traversed.  But a weight change

procedure which seeks always to move ahead by reducing the error signal will

clearly not get beyond the first intervening valley.  To move on would

necessitate going uphill and hence briefly increasing the error signal. In

such cases things have to get worse before getting better.

The important fact, for our purposes, is that the error surface for the

XOR net described earlier is of the ’difficult’ stripe involving what

P.S.Churchland and T.Sejnowski aptly describe as ’ravines and assorted

potholes’ (op.cit.p.111). Suppose, then, that a great selective advantage will

accrue to any net which solves XOR: how are we to promote success? Otherwise

put, how might evolution ’fix’ things so that a network embedded in a given

organism gains the posited selective advantage?

One brutal and maximal option is to hand−code the solution. The

absolutely minimal option is to provide the necessary architecture (i.e.

include hidden units) and hope for the best (i.e. hope that the network is not

givowand m getl therure which seeks:like a mo get Td
(abss purpsontals,)cost11 Te.g.(misn)’
(suchrrated that a nbyositesc wha
(The imwehe lwoe whics  separated from thhe loca that a nt’ 6 −22ntee like imweheerrn minprs ticleche weightsist11 nentoials,) that thn is to provide thlike(i.e.failo m−wayne ( necessno,) that thdomve − lnng

error ise, nhe

that provigreachich su(error is(in ghtve to tm gainweiailtwor(padtwongvve to thiay detecing error6 ine ain lnng)’ (r(pad)Tj
−ydtwonvanta trmeighsinter sep we t’ andom’ecing embedich s mohinted

nvolrmnce bk ’rn ’gely minimal optioioovawnhilint of ,ngvve to thi



May 6 12:20 csrp270 11



May 6 12:20 csrp270 12

gateway, the inputs here are likely to be 99% dominated by human faces.  A

network subject to such a barrage will quickly and efficiently learn to become

a face−recognition device.

Minimal rationalism thus places much faith in the gentle manipulation

(by small initial biases) of the way incoming data is taken by an organism

(i.e. the way it is selectively filtered and sent to various locations in the

brain). The complex interaction between small innate tendencies and external

inputs thus posited is most reminiscent (as Karmiloff−Smith notes) of Piaget’s

(1955) notion of an ’epigenetic’ interaction, between training and innate

tendencies except that it allows for domain−specific innate biases of a kind

inimical to Piaget’s ideas about general purpose learning (see Karmiloff−Smith

(1992−b ch.7).

A final example should establish the full potential of the minimal

rationalist option.  It involves the combination of the ’error−surface’

manoeuvres and the idea of innately specified reconfigurations of the input

data.  The examples is drawn from a simulation due to Nolfi and Paresi (1991).

The task is to ’evolve’ an artificial organism which will be capable of

learning to find food in a simulated world. The ’organism’ (a computer

simulation) receives ’sensory’ input which specifies the location of nearby

food.  It must learn to take this information and use it to generate motion

commands which will move it to where the food is located, so it must learn a

general ’sensory−input −−−> motion towards food’ mapping.

One solution would be to use ordinary connectionist ’tabula rasa’

learning. This works here.  But a drawback of such learning is its supervised

nature: the error signal is driven by knowledge of what the right answer would

be.  This kind of supervision is often biologically unattractive.  All too

often we don’t know what the right answer would be until we’ve found it!

An alternative is to use so−called ’genetic algorithms’ techniques to

evolve a solution.  In this approach, a multitude of different networks (ones

with different, but random weights) are tried out.  The most successful are

allowed to reproduce (with minor weight variations) to form a new generation.

And this process is repeated until good eating is achieved.  Such a technique

would also succeed (see papers in Meyer and Wilson (eds) 1991). But it, too,

has a cost viz. that evolution is required to ’hard−wire’ the solution to the

problem.  If a cheaper (lazier) solution were available, there is reason, as

we remarked earlier, to suppose it would be preferred.

Nolfi and Paresi found just such a solution.  Instead of having the

evolutionary process operate directly on a set of units and weights leading to

motion commands, they allowed evolution to operate on a different set of units

and weights whose task was not to give motion commands but to train a net

which does.  The organism thus comprised two sub−nets, called the Standard

(motor control) net and the teaching net.  The teaching net and the standard

net received the same inputs (’sensory’ data). The standard net was allowed to

learn in the usual, supervised way.  But instead of depending on prior

knowledge of the right answers to generate the target output relative to which

the error signals are computed, it received target outputs from the teaching

net.  The genetic algorithms approach was then taken.  This allowed the

evolutionary process to progressively select in favour of organisms whose

internal teaching nets did the best job of generating training signals which

would lead the overall organism to ingestive success.  The process succeeded.

After about twenty generations, each comprising a hundred organisms, ingestive

success was achieved.  A reasonable fear, at this point, might be that nothing

much has been achieved by the evolutionary detour involved in the selection of

an auto−teaching capacity.  Perhaps all that has happened is that the teach

net has evolved so as to solve the ’ingestion maximization’ problem and the

standard net then copies this evolved solution. In which case there is no real

gain over the straightforward method of general evolution.

Two results, however, suggest that the actual situation is much more
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complex and interesting.  First, the final degree of success achieved by the

complex auto−teaching organisms was markedly greater than that achieved, over

the same period of evolutionary time by a control simulation in which only the

standard net is used and no individual learning occurs.  Second, it turns out

that the problem solution finally learnt by the standard net is actually

better than the one evolved in its associated teach−net! To show this, Nolfi

and Paresi allowed successful organisms to move directly in accord with the

target outputs generated by the teaching net instead of with the outputs

produced by the standard net.  They found that the eating behaviour coded for

by the teach net alone was less successful, by a fair margin (about 150 items

per lifetime) than that achieved by the standard net if it (the teach net) is

allowed to train it! The explanation of this seems to be that there is some

difference between what constitutes a good teaching input at a given moment

and what would actually constitute the best action; i.e. the best target, for

teaching purposes, is not always the best action. But we are not home yet.

Before the full picture can emerge, one more piece of the puzzle needs to be

laid out.

The piece in question concerns the role of the initial weights of the

standard network in promoting successful learning. One clear possibility was

that evolution might have selected the right weights directly in the standard

net, despite the teaching net’s presence in the set−up.  But this was easily

seen not to be the case, as the standard net (of a 200th generation organism)

frozen at birth and allowed to generate the usual lifetime of actions,

performed abysmally: it clearly did not encode any solution to the ingestion

problem at birth. It might seem, then, that the initial weights of the

standard net played no special role.  If so, then the randomization of those

weights at birth ought not to matter just so long as the resulting standard

net was then recipient to the teaching inputs of the evolved teach−net.

Probably the single most striking and (I shall argue) revealing of Nolfi and

Paresi’s findings was that this was not so.  Far, far from it.  In fact, the

randomization of the standard weights at birth completely wiped out the

ability of the complex organism to learn to approach food.  The conclusion

follows that:

the standard weights are not selected for directly incorporating

good eating behaviours ... but they are accurately selected for their

ability to let such a behaviour emerge by life learning.

Nolfi and Paresi (1991) p.10

Now things fall into place.  The initial weights of an evolved standard

net are important in two ways.  First, they matter in the way that initial

weights always matter i.e. bad random weight assignments can block successful

learning by quickly leading the net into local minima. But second, the matter

insofar as the teach−net has co−evolved, in the succession of individual

organisms, with a fixed (subject to minor mutation) initial standard et.  The

teach net will thus have learnt to give training inputs appropriate to that

initial position in weight space.  This would go some way towards explaining

the discrepancy between the success achieved by the teach nets alone and the

successes achieved by the correct pairings of teach−net and standard net.  For

some of the teach−net’s outputs may be geared not (directly) to coding the
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individual lifetime. in the sense that if sensory input PQ caused it to issue

a teaching signal RT at time T, then the same input would have the same effect

at all other times were it to be received again. But as we saw earlier it is

often beneficial for networks to receive different kinds of training at

different temporal stages of learning. In an attempt to begin to model such

further complexities, Nolfi and Paresi studied a population of organisms

(teach net/standard net pairings) in which each sub−net passed target outputs

to the other, and the back propagation algorithm was this time allowed to work

on each. A channel was thus opened up between the standard net and its

’teacher’ such that the teacher could change its output (for a given input) as

a result of weight changes determined by the output of the standard net.  The

output of each sub−net contributes to changes in the weights within the other

during the lifetime of the organism.  There is thus space for the teaching

outputs of the teach net to alter during the organism’s lifetime.

The performance of the ’reciprocal teaching’ net was perhaps

disappointing. It did not exceed (did not even quite match) that of its

predecessor. What is of interest, however, is the fact that in this case

neither sub−net, when tested at birth, encoded anything like an acceptable

solution to the problem (unlike the previous case in which the evolved teach

net constituted a good solution, though not as good a solution as the one its

attendant standard net would come to learn). Yet working together, they

achieved a good degree of success. Here, then, we find an even more subtle

kind of innate knowledge, in which what has evolved in the two sub−nets is the

capacity to co−operate so as to learn (and to learn to teach) useful food

approaching strategies. But neither net is now clearly marked as the student

or the teacher in this endeavour. Instead, the two nets, in the context of the

training environment, present a delicately harmonised overall system selected

to facilitate just the kind and sequence of learning necessary to meet the

specified evolutionary pressures.

The crucial moral of the above discussion is that the space of possible

ways in which knowledge might be innate in a system is very large and includes

some very subtle cases. The key to these cases is the simple idea that the

training data seen by various subnetworks engaged informs of associative

learning need not correspond to the gross environmental inputs to the system.

There is plenty of room for a transformation factor of some kind (or kinds) to

intervene.  Once we see that the way such a transformation factor (the teach

net in Nolfi and Paresi’s simulations) works can itself be the product of

evolutionary pressure, we begin to see how nature might contrive to insulate

its connectionist engines from some of the vagaries of the environment. In so

doing, we need not (and typically will not) return to a position in which the

actual environmental inputs are barely relevant (as in a triggering scenario).

Instead we face a rich continuum of possible degrees of innate specification

corresponding to the extend to which a transformation factor moulds the actual

inputs in a certain direction. In addition to this, it is clearly possible

that the initial weights in the learning network (the standard net, in Nolfi

and Paresi) may themselves have been selected so as to facilitate the

acquisition of knowledge in a given domain. And more subtly still, they may

have been selected so as to facilitate the acquisition of that knowledge given

a co−evolving transformation function (such as the teach net) and vice versa

(i.e. the transformation function may be geared to the specific position on an

error surface occupied by the standard net to which it is attached). The

overall picture of ways in which various tendencies to acquire knowledge may

be innately specified is thus already enormously complex. It gets more complex

still once we notice that evolution could select a transformation function

which itself changes over time.  And more complex again if that ’temporally

loaded’ transformation function is evolved to respond to feedback from the net

it is serving. And the space of possible kinds of transformation function is

itself large. Nolfi and Paresi investigate one kind in the auto−teaching

paradigm.  But it includes any case where the training input to one net is the

output of another rather than direct environmental simulation, i.e. it applies

to all cases in which we confront a cascade of networks passing signals to

each other.  In all such cases, we are still depicting the mind (pac− Fodor)
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Fodor) to in any way marginalize the role of the environment in presenting a

rich inductive basis to the evolved organism.  A ’lazy’ evolution will have

fixed on minimal innate endowments which make the most of whatever information

is out there for the taking.

A final disclaimer. In arguing for a partially non−propositional

(geometric, mathematical) specification of some of our innate representational
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