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Abstract

The increasing level of attention being given to incremental learning

is, we argue, fully justi�ed. Although some view the process as something

akin to an `e�ciency hack', we argue that it is, in fact, a key cognitive

process. The argument is based on a statistical observation. Learning,

for most purposes, is all about acquiring the ability to generate appro-

priate outputs from given inputs, i.e., it is all about acquiring the ability

to predict | or, in general, give a probability to | speci�c bindings of

output variables. Such predictions can be justi�ed in two quite di�erent

ways by available training data (i.e., input/output examples). They can

be justi�ed directly, in virtue of being in 1-to-1 correspondence with prob-

abilities (i.e., frequencies) directly observed in the training data. Or they

can be justi�ed indirectly, in virtue of being in 1-to-1 correspondence with

probabilities observed in some re-coding of the data. Thus, where learning

is driven by supplied training data, it must exploit some combination of

these two types of justi�cation.

Since the space of indirectly observed probabilities is grounded in the

space of possible re-codings (i.e., applicable Turing machines), searching

through it is intractable. But we should not infer from this that learning

does not (and cannot) make use of indirectly observed probabilities. As

we show, learning problems whose solution necessarily entails exploiting

such probabilities (or type-2 problems, as we call them) seem to be the

norm in many realistic learning scenarios. We are thus left in need of an

y

The order of names is arbitrary.
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the data. Thus any process for regularity-extraction must attend to two di�er-

ent sources. The search space for regularities of the directly-observed variety is

large but not, in general, intractably large. The search space for regularities of

the indirectly-observed variety, on the other hand, is in�nitely large, since it is

grounded in the space of possible re-codings of the input data, i.e. the space of

applicable Turing machines. Thus, on complexity grounds, we classify one form

of regularity as being relatively `transparent' and the other as `opaque'.

When confronted with problems that involve extracting regularities of the opaque

variety, connectionist learning algorithms such as standard backpropagation are

unreliable. Parity generalization problems provide the obvious example. If one

presents standard backpropagation (Rumelhart, Hinton and Williams, 1986b)

with a complete parity mapping | allowing the algorithm to make use of a

su�ciently rich internal architecture | then the learning will almost certainly

succeed in achieving perfect performance. However, if one presents only a plau-

sible training set (i.e., some large proportion of the complete mapping) then

success is not assured. For example, if one presents 12 of the possible 16 cases

from the 3-bit parity mapping, backpropagation typically learns those 12 cases

rather rapidly and rather well (see Section 1.4 below). But it usually learns

them in such a way that the four unseen cases are not handled correctly; i.e.

it fails to generalize to the full mapping. The reason for this is fairly straight-

forward. With parity mappings, the signi�cant probability e�ects are tied not

0.6398hize it|



for all combinations of explicit values are necessarily at chance levels.) This

means (for reasons that are explained in detail below) that solving the learning

problem involves deriving an appropriate re-coding; i.e., it means extracting

regularity of the opaque variety. The problem cannot be solved by extracting

the transparent form of regularity | for the simple reason that it is not present.

The fact that connectionist learning algorithms (such as backpropagation) may

fail on parity generalization problems shows that their capacities for extracting

regularities of the less accessible form are limited to some degree. (Note that the

problem here is all to do with the ability of such systems to learn generalizable

solutions: the fact that a non-generalizable solution can be learned, or that

a generalizable solution can be represented is not what's at issue.) Possible

responses to the problem are (1) to blame connectionist learning algorithms

and hope to �nd something better or (2) to deny that most of the problems

solved by the human brain require the sort of re-coding that opaque regularity-

extraction may require (i.e., to claim that parity-generalization is a pathological

case). We reject (1) on the grounds that the problem is not, as far as we can tell,

a mere artifact of connectionist learning; instead it is a problem which will arise

for any learning algorithm which operates without speci�c inbuilt knowledge

about a target domain. And we reject (2) because the problem of re-coding

seems to arise even in relation to apparently simple `robotics-style' tasks (i.e.

in manifestly non-pathological cases | see Section 1.6 below).
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The correct response to the problem, we argue, is to reconsider the di�culties in

the light of an accumulating body of work, e.g., (Elman, 1991) which highlights

the role of representational trajectories in connectionist learning. A represen-

tational trajectory is just a connected path through a temporally or spatially

extended sequence of di�erent learning tasks. By following such a trajectory

a single intractable problem can be reduced to an incremental sequence of dif-

ferent and individually tractable problems. The solution to each sub-problem

yields, in e�ect, a re-coded representational base. Such re-codings progressively

reduce the complexity of the task of learning the target mapping until it be-

comes tractable. Otherwise put, each re-coding allows us to avoid a quantity of

computational search by providing a more suggestive set of `virtual inputs'. We

thus trade computation o� against representation.

While this strategy is not unfamiliar (it is just a kind of `temporal homuncular-

ism' and has been the subject of a well-known investigation by Elman, 1991),



derstood in these terms. Such ploys and mechanisms range from simple evolved

�lters and feature-detectors all the way to complex cases of analogical reasoning.

The goal, in every case, is to systematically re-con�gure a body of input data so

that computationally primitive learning routines can �nd some target mapping,

i.e. to trade representation against computation. A topical moral is that it is

virtually impossible, in such cases, to avoid talk of internal representations as

the products of each stage of re-con�guring. Pace the more radical apologists

of Arti�cial Life, even



regularities, consist in frequency e�ects found via some re-coding of the original

data.



1 Statistical properties of training sets

Let us begin by making some general observations about the statistical proper-

ties of training sets (i.e. sets of training examples). Consider the training set

shown below. This is based on two input variables (x1 and x2) and one output

variable (x3). There are six training pairs in all. The pairs are laid out with

one pair per line. An arrow separates the `input vector' of the pair from the

`output vector'. The values of the two input variables appear on the left of the

arrow. The value of the output variable appears on the right.

x1 x2 x3

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

In this training set we can observe a number of instantiation n-tuples, henceforth



instantiation 2-tuples. An example is <x1=3, x2=1>. This case is observed in

the fourth line of the training set. A second-order case from the second line

of the training set is <x3=0, x1=2>. Since there are only three variables in all

there is exactly one third-order case for each member of the training set.

Given a particular case, we can compute the frequency (i.e., probability) with

which it appears in the training set. The frequencies for all �rst and second-

order cases in the training data above are shown in Table 1. Note that the

frequencies for the third-order cases (i.e., the cases that specify values for all

three variables) are degenerate. Assuming there is no duplication in the training

data, each third-order case occurs exactly once. Thus its frequency is necessarily

1/n where n is the size of the training set.

1.1 Conditional frequencies

The frequencies shown in Table 1 are unconditional frequencies. We can also

derive conditional frequencies.

2

These are frequencies that exist with respect

to a particular constraint over variable instantiations. In Table 2 we see the

frequencies for particular instantiations of the output variable (x3) given possi-

ble constraints on other variables. The column headed `Fr' shows the absolute

frequencies for the constraints. The column headed `Fr: x3=0' shows the con-

ditional frequency with which x3=0 when the relevant constraint applies. The

2

These can be construed as Bayesian probabilities (Duda and Hart, 1973).
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Case Fr

1

x2=2 0.5

x2=1 0.5

x3=1 0.5

x3=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

x2=2, x3=1 0.33

x2=1, x3=0 0.33

x1=3, x2=2 0.17

x1=2, x2=2 0.17

x1=1, x2=2 0.17

x1=3, x2=1 0.17

x1=3, x3=1 0.17

x1=2, x2=1 0.17

x1=2, x3=1 0.17

x2=1, x3=1 0.17

x1=3, x3=0 0.17

x1=1, x3=1 0.17

Table 1:
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column headed `Fr: x3=1' does the same thing for the case x3=1.

By the argument used previously, the 2nd-order conditional frequencies here are

of no interest since there is necessarily exactly one occurrence of each 2nd-order

case of the constrained variables.

1.2 Type-1 versus type-2 frequencies

A clear distinction must be made between cases (such as those considered above)

that can be observed directly in the training data, and cases that can only be

observed indirectly. For our purposes, a case can be observed indirectly if it can

be observed directly in some systematic re-coding of the original data. What

this means is that an instantiation n-tuple that occurs in some re-coding of

the original data, is considered to be a case that is `observed indirectly' in

the original data. We will call frequencies for directly observed cases type-

1 frequencies. We will call frequencies for indirectly observed cases type-2 or

derived frequencies.

The di�erence between the two types of frequency can be illustrated by re-coding

our original training set. Imagine that we re-code the inputs (from above) by

substituting | in each training pair | the original input variables with a single

variable whose value is just the di�erence between the original variables. This

gives us a set of derived pairs as shown in Figure 1 (the value of x4 here is the

di�erence between the values of x1 and x2). The frequencies we directly observe

13





in this derived training set are type-2 (derived) frequencies with respect to the

original training data. However, they are still frequencies.



Constraint Fr

1

x3=0 0.5

x3=1 0.5

x4=1 0.5

x4=0 0.33

x4=2 0.17

x4=1 + x3=1 0.5

x4=0 + x3=0 0.33

x4=2 + x3=0 0.17

Table 3:

Constraint Fr Fr: x3=0 Fr: x3=1

1 0.5 0.5

x4=0 0.33 1.0 0.0

x4=2 0.17 1.0 0.0

x4=1 0.5 0.0 1.0

Table 4:
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surface. Once this has happened it is a straightforward matter for a learning al-

gorithm to exploit it. Recognizing the strong, mutual interdependence between

learning and regularity leads us to distinguish three classes of learning problem.

� Pure type-1 learning problems: problems that involve exploiting type-

1 regularities only,

� Pure type-2 learning problems: problems that involve exploiting type-

2 regularities only,

4

and

� Hybrid problems: problems that involve exploiting some mixture of

both types.

1.4 Parity problems are pure type-2

The distinction between type-1 and type-2 problems is nicely illustrated by the

parity problems (cf. Rumelhart, Hinton and Williams, 1986a). Complete parity

mappings show no type-1 regularity at all. Their observed frequencies are always

exactly at their chance levels. (Hinton and Sejnowski, 1986) The input/output

rule for a parity mapping is simply that the output should be 1 (or true) just

4

A special case of the type-2 problem occurs when the relevant re-coding can be performed

by deriving simple probability e�ects from subsets of the training data. The complexity of

this variant exceeds that of the type-1 problem due to the additional cost of exploring possible

partitions of the training data. However, it is not as great as that for the unrestricted type-2

case since there is no necessity to explore any part of Turing-machine space.
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in case the input vector contains an odd number of 1s (or, in general, an odd

number of odd values). The complete mapping for the third-order, binary-valued

parity problem (i.e., 3-bit parity) is as follows.

x1 x2 x3 x4

1 1 1 --> 1

1 1 0 --> 0

1 0 1 --> 0

1 0 0 --> 1

0 1 1 --> 0

0 1 0 --> 1

0 0 1 --> 1

0 0 0 --> 0

Every single �rst and second-order conditional frequency for this mapping (for

values of the output variable x4) is at its chance level of 0.5. And, in fact,

the frequency statistics for parity mappings are always like this. If we are

dealing with n-bit parity then the highest order, non-degenerate frequencies

are the (n-1)th-order frequencies. Given binary variables we will necessarily

�nd exactly two occurrences of each (n-1)th-order case in the training set, and

these two cases will necessarily show a di�erent value for the variable excluded

from the case. Thus the conditional frequencies for the case in question will be
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evenly distributed between the two output cases and the conditional frequencies

for instantiations of the output variable will always be identical. If they are

identical, they must be precisely at their chance level. Thus, parity problems

are always pure type-2.

5

1.5 Complexity implications

Distinguishing between type-1 and type-2 problems helps to shed light on the

complexity implications of di�erent learning scenarios. Type-2 regularities are

non-chance frequencies for cases observed in some re-coding of the original data.

Thus, points in the space of type-2 regularities correspond to possible data re-

codings, i.e., possible computational devices capable of processing those original

data. The space of possible type-1 regularities, on the other hand, is made up of

the set of all frequencies (conditional and unconditional) for the problem. Su�ce

it to say that the former space is, in general,



(i.e., which are constructed on the basis of an input/output rule that implicitly

invokes a re-coding step) may well exhibit `spurious' type-1 regularity.

The example training set used above illustrates this. The problem is `intrinsi-

cally type-2' since the input/output rule used to construct the pairs assumes the

re-coding step of converting the original input variables to their di�erence. And

yet the type-1 frequencies show some marked, non-chance values (see the fre-

quencies for the cases <x2=1> and <x2=2>). These would be straightforwardly

exploited by processes that perform no re-coding whatsoever, e.g., learning al-

gorithms such as the perceptron learning algorithm (Minsky and Papert, 1988)

or Quinlan's ID3 (1986).

Even where intrinsically type-2 problems show very little spurious type-1 reg-

ularity they may still be solved by sophisticated learning algorithms such as

backpropagation (Rumelhart, Hinton and Williams, 1986b), cascade-correlation

(Fahlman and Lebiere, 1990) or copycat (Hofstadter, 1984).

6

It is, after all, well

known that backpropagation can solve problems based on parity, symmetry or

`shift' relationships and that all these typically involve the algorithm deriving

what can be thought of as an internal re-coding scheme.

However, we should not overestimate the generality of such methods. All of them

introduce restrictive assumptions about the nature of the type-2 regularity to be

6

This latter is not usually presented as a learning algorithm. However it can certainly be

construed as such.
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discovered. Backpropagation for example e�ectively assumes that the required

re-coding can be expressed in terms of the user-�xed architecture of semi-linear

transfer functions, and that it can be discovered by the gradient descent method

embodied in the learning algorithm. If the assumption is invalid, the learning

necessarily fails.

This may help to explain why backpropagation often fails to solve low-order

parity problems when they are presented as generalization problems (i.e., when

some cases are held back for testing purposes). The graph shown in Figure 2 was

produced from an empirical survey that involved running standard backpropa-

gation (Rumelhart, Hinton and Williams, 1986b) on 4-bit parity generalization

problems (with four, randomly selected cases used as unseens) using a wide

range of internal architectures. All the curves in the upper half of the graph are

error pro�les

7

for the testing set of four cases. All the curves in the lower half

of the graph are error pro�les for the training set. There are 32 pairs of curves

in all although many of them are bunched together in two clumps at the far left

of the graph. Rather obviously, generalization over the testing cases was never

observed to improve much beyond the chance level in any of the runs recorded.

But the point to note is that the training-set error pro�les typically go to zero

rather rapidly (usually within 1000 epochs). This tells us that the generalization

7

The error measure is the average di�erence between actual and target activations. For

these experiments we used standard learning parameters; i.e., a learning rate of 0.5 and a

momentum of 0.9.
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failure occurs in the context of perfectly `successful' learning, i.e., perfect acqui-

sition of the training cases. This is a particularly concrete sort of generalization

failure since it cannot be overcome by increasing the amount of training or by

changing parameters. Once a supervised algorithm has learned the training

cases perfectly, generalization grinds to a halt. As far as the algorithm `knows',

it is





in a visual �eld are necessarily



2 Incremental solutions

Given the likely ubiquity of learning problems involving relational (type-2) reg-

ularities how should we react to the ease with which natural systems appear to

deal with them? One possibility is that there exists a more powerful, as-yet-

undiscovered class of learning algorithms capable of performing type-2 search in

an individual lifetime. Alternatively, we might conclude that nature's achieve-

ment is somehow to exploit forms of learning which involve only type-1 search

in ways which somehow cumulatively lead to the solution of type-2 problems.

Given our discussion of the statistical roots of the di�culty of type-2 search, we

suspect that no conceivable individual learning algorithmwill be able reliably to

negotiate such spaces in biologically realistic time-spans. We will therefore in-

vestigate a version of the second response in which type-2 problems are reduced

to incremental complexes of type-1 problems.

We can illustrate the basic idea using an example in which we imagine a type-2

learning problem being solved by a learner with rather limited computational

abilities. The example is based on the training set shown below. This uses 21

variables and these are shown in the usual fashion starting with the �rst variable

(called x1) on the far left and �nishing with last (called x21) on the far right.

(Only the integer parts of names for variables between x2 and x21 are shown).

At the very end of each line there is a comment in square brackets.

x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

27
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�rst card in hand A. Variables x3 and x4 represent the number and suit values

of the second card in hand A, and so on.



vectors. In the simplest case, this involves applying `hand-evaluation' functions

to the relevant sub-ranges of input values and `evaluation-comparison' functions

to the values thus produced. But what happens if the re-coding is to be carried

out by an agent (e.g. a learner) that is limited in its computational properties?

What if we assume that it is unable to carry out such sophisticated operations

as `hand-comparison' and `evaluation-comparison'?

It is tempting to say that the regularity in question then becomes inaccessible

to the learner. But this is certainly an exaggeration. The learner might have

access to functions that could be combined together somehow so as to bring the

regularity in question to light. In this case, the regularity would be accessible

but discoverable via a di�erent route (i.e. trajectory).

Imagine, for the sake of argument, that the learner has access to a function that

computes the equality of an arbitrary number of inputs and a function that

computes the di�erence of two values. Let us also imagine that the learner is

able to feed arbitrary constant values into these functions as they are applied.

Given these computational properties, is there a re-coding of the Poker training

set that brings out the underlying regularity?

Figure 3 illustrates one possibility. It shows a re-coding that involves several ap-

plications of both the accessible functions. Applications of the `equals' function

correspond to nodes marked with an `eq'. Applications of the `di�erence' func-

tion correspond to nodes marked with `di�'. Inputs for these applications arrive

30



via the relevant branches. They may be the outputs of function applications

or, at the



straight and hand B is two-pairs. According to the rules of Poker, a straight

beats two-pairs. So we would expect values of this �nal output to be correlated

strongly with values of the output variable x21. Thus we �nd that the re-coding



the limited function base, some of the computation that underpins the relevant

regularity is `picked o�'. Eventually, a level of representation is reached at which

the computation can be performed using one of the basic functions.

It is important that the sense of `representation' in play here is not as rich





3 From Feature Detection to Analogical



is required is some way to arti�cially constrain the solution space

to just that region which contains the true solution. (Elman, 1991,

p.8)

By `false solutions' Elman means the extraction of the wrong regularities, i.e.

�nding spurious type-1 regularities which will fail to determine successful per-

formance on unseen cases.



suing the type 1 statistics of a fragment or fragments of the overall training

data and then using the feature detection skills thus acquired to reduce sub-

sequent search; i.e., the overall problem is solved by the devious (temporally

structured) exploitation of type-1 learning focussed initially on subsets of the

overall training data.

This assumes, however, that the speci�c feature detectors needed to reduce

subsequent search are discoverable just by looking at fragments of the training

data appropriate to the �nal task. But not all learning problems (not even all

those prone to a kind of incremental solution) will fall into this class. Instead,

some target mappings may be learnable only if the search space is controlled by

the exploitation of feature detectors which could not be acquired by focussing

on subsets of the training data specifying the target mapping.

As an example, consider once again the conditional approach problem briey

described at the end of section 1. Successful learning here depends on the

presence of two feature detectors: one for closeness and one for apparent width.

The crucial feature which the net must later identify to learn the target mapping

is actual width | a ratio between these two lower level features. But no amount

of exposure to the data which embodies the conditional approach mapping will

prompt the net to develop these two lower level feature detectors. Instead, they

must be developed as a result of the early attempts of the system to learn to

perform other kinds of task. In such cases the target problem has only what

37



we can call an extended incremental solution. The type 2 task (conditional

approach) can be learned from the given data as long as the two prior feature

detectors are present. But these feature detectors will not themselves arise

merely as a result of exposure to that data, nor as a result of exposure to any

subset of it. In these extended cases the right learning trajectory over time will

indeed ensure the acquisition of the target skill. But the trajectory involves the

importation of other feature detection skills acquired as a result of attempts to

solve di�erent problems.

Conservative incremental learning is thus self-su�cient in a way which extended

incremental learning is not. Elman's grammar acquisition case is conservatively

incremental and hence is well suited to a treatment involving a single network

and a single (but usefully fragmented) body of training data.



Such modular



feature-detecting modules in wholly new overall problem solving contexts.)

Other ways of exploiting spatially extended cascades of processing devices



even if the statistical presence of human faces in the gross visual inputs to the

system is low (relative to e.g. walls and buildings) the e�ective statistics (further



limited short term memory and techniques of modular decomposition all play



Such categories, he goes on to argue, must, however, be in some sense given

(either explicitly or implicitly) in the body of input data. A category counts as

explicitly given if the input coding isolates those very items (e.g. the category

`verb' is explicitly given if the input involves a variable which stands for verbs).

And a category is implicitly given if the training data allows the net to induce

such a category, although no individual variable coded for it in the input (e.g.

NETtalk's induction of a partition corresponding to the noun/verb distinction

on the basis of a corpus of unmarked sentences, see (Sejnowski and Rosenberg,

1987)).

Churchland's worry is that in some cases the category needed to make systematic

sense of a body of data may not be present in that body of data | not even

implicitly. Suppose that what is present (implicitly or explicitly), is conceived of

as, in a broad sense, being observationally available. The question then becomes

how a net can learn a category which would (a) make sense of a body of data

but (b) is not observationally available in the data. The problematic case is

thus described as one in which:

... a functionally essential category is simply not present in the in-

put vectors at all, not even implicitly. Here the network must fail to

learn if there is no functional relation that binds the observationally

available categories in the absence of the hidden category. A net can-

not learn a function that does not exist. (Churchland, forthcoming,

43



p.19)

The problem is pressing insofar as the course of human knowledge has involved

the repeated positing of categories which (according to Churchland) are not

given (implicitly or explicitly) in the data. Instead, we `reach behind the ap-

pearances' to posit atoms, electrons, electromagnetic waves etc. etc.. How is

this possible if learning consists (as the connectionist suggests) in a curve-�tting

procedure de�ned over observables?

Churchland's answer is fascinating and suggestive. But before we consider it, it

is worth pausing to question the way the problem has just been set up.

On the one hand, Churchland wants to recognize the ability of connectionist

learning to induce new variables and representations. This is what happens

when a net �xes on a regularity which was not explicitly marked in the input

data. On the other hand, he sees that very often connectionist learning will

be unable to discover a given regularity precisely because a speci�c variable is

missing. To balance these two observations, he appeals to the notion of what in-

formation is actually present (implicitly or explicitly) in the input data. But on

what grounds do we decide what information is or is not thus present? Church-

land's underlying criteria looks to be this: if a curve-�tting procedure applied

to that set of data points can unearth the regularity, it is counted as present

(observable) in the data, and otherwise not. But this is hardly explanatory.

What we want to know is why, given that the mapping is learnable if the data
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is viewed through the lens of a speci�c category, is a network sometimes able to

induce knowledge of the essential category and sometimes not? The distinction

between type-1 and type-2 regularities provides the answer.

When the statistical regularity captured by a given category is type-1 relative

to a training set, the kind of search undertaken by standard learning algorithms

can be relied on to discover it. When the regularity is type-2, that kind of

search will fail. What is needed in the latter case is some means of reducing the

problem presented by the input data to that of extracting a type-1 regularity.

The problem is not well understood by asking what is in some elusive sense in

the training data. Rather, the issue concerns what can plausibly be got out

of the training data given a certain manner of searching the space of potential

relations between input items.

Thus (re)construed, Churchland's general problem concerns not just those rare

cases where essential data is genuinely absent but also (and more commonly)



what he terms conceptual redeployment. Conceptual redeployment is a pro-

cess in which a set of categories successfully induced to facilitate success in

one domain is imported to another. Such importation (promoted by e.g. the

chance juxtaposition of the intractable problem with a reference to the other,

successfully-theorized, domain) allows the data from the problematic domain

to be systematically reconceptualized via the lens of the imported categories.

Thus, to follow Churchland's example, we may induce the categories of wave

phenomena to make sense of observable input data concerning liquid behaviour.

But once these categories (wavelength, velocity, frequency, etc.) are available,

they may be redeployed to make sense of bodies of data from other domains

(sound, light, etc.). Churchland comments that:

While the conceptual prototypes of wave phenomena could not have

been learned in either of these comparatively opaque domains, they

were certainly capable of being redeployed there... (Churchland,

forthcoming, p.25)

Without the transforming lens of the feature detectors for wave phenomena,

the bodies of data concerning sound and light presented intractable problems of

search. What Churchland has described, we believe, is a representational trajec-

tory in which more tractable bodies of data (the water data) yield knowledge of

variables (or even just feature detectors) whose use in pre-processing transforms

the sound and light data into a form in which the target regularities are closer
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to the surface and hence prone to succumb to the kind of search methods we

actually have available. Churchland tends to depict conceptual redeployment

(aka analogical reasoning) as a strategy in which no process of `curve-�tting

learning' occurs. But it is not clear that this is so. We claim instead that

the imported categories/features recon�gure the data so that the curve-�tting

is relatively trivial. Achieved representation is thus traded against intractable

computation. But computation is not altogether abandoned.

4 Evolution, Creativity and Cognitive Closure

The single most important key to cognitive success, we have argued, lies in the

use of a variety of diverse methods by which to transform intractable type-2

learning problems into temporally or spatially extended sequences of problems

of an easier statistical stripe. Such methods may range from the genetically

determined provision of simple feature detectors to the analogical redeployment

of achieved knowledge. There is, however, a snag.

The snag is that all the methods available depict the solution of type-2 learning

problems as in a certain sense fortuitous. By this we mean that it looks to be

impossible, if our analysis is correct, to actively take a type-2 problem and work

backwards to unveil a successful problem-solving trajectory. Type-2 problems

get solved, it seems, only when we �nd ourselves in a position to solve them.

We cannot put ourselves in a position to solve them.





learning. Or we may be lucky enough to be genetically provided with �lters |

pre-processors which transform the gross input data into a manageable form.

What is lacking in all cases, however, is any general purpose type-2





whose e�ect is to promote the preservation of the structure of the successful sub-

nets of previous generations. The complex problems which will succumb most

gracefully to such a system are, of course, those problems which decompose into

a set of tractable sub-problems.

Second observation: evolution exibly co-constructs problems and solutions.

The point here is that it is easy to overestimate the statistical di�culty of an

evolutionary search which has terminated in a solution to a type-2 problem

(such as conditional-approach). One source of such overestimates is a mistaken

tendency to depict evolution as facing a speci�c problem and needing to search

for a solution. Thus in the case of e.g. supervised connectionist learning, the

system is given the task of learning a speci�c mapping M and must search the

space de�ned by its architecture and inputs for a solution. But the evolutionary

case is rather di�erent. Any `solution' which yields a surviving and reproducing

being will do. If evolution then hits on the solution to a type-2 problem, we







which criss-cross individuals and outstrip human lifetimes. In addition, we can

(by grace of such cultural institutions as schooling) easily re-create, time and

again, the kind of learning trajectory which leads to the solution of key complex

problems. In these ways, the occasional fruits of good fortune (the discovery of

a powerful input re-coding (a concept) or a potent sequence of training items)

can be preserved and used as the representational base-line of the next gen-

eration's mature explorations. Language and culture thus enable us to trade

achieved representation in any member of the species, past or present, against

computation for all posterity. Given the necessarily fortuitous nature of the

search for new representations, this is an advantage whose signi�cance cannot

be exaggerated.

It is interesting to compare this vision (of language and culture as a means of



We think Dennett is almost right. He is right to depict language as a key factor

in our abilities to frequently and repeatedly appear to exceed the bounds of ABC

(or, as we would have it, type-1) learning. Yet in a very real sense there is, we

believe, no other type of learning to be had. What looks like type-2 learning

is in fact the occasional re-formulation of a type-2 problem in terms which

reduce it to type-1. Language, we suggest, simply enables us to preserve and

build on such reductions, insofar as the key to each reduction is an achieved

re-representation of a body of data. But language is not, we think, the root

of such re-representations. Instead, such re-representations must be discovered

essentially by chance (perhaps aided by an endogenous, though undirected, drive

to continuously seek re-coding of existing knowledge) in either individual or

species learning. Language is a preserver of chance representational discoveries

and of useful learning trajectories. It also doubtless feeds and augments the

trick of analogical reasoning which we discussed earlier. Language-users will

thus indeed steer a profoundly deeper course into the type-2 problem space

than anyone else, but for reasons which are, we suspect, a little more pedestrian

than Dennett imagines.

The three observations just rehearsed combine, we hope, to make our cognitive

situation seem a little less bleak. True, we are type-1 learning devices inhabiting

a world populated by much more complex regularities. But by trading represen-

tation against computation, in both individual and species time, we nonetheless

make signi�cant inroads into the type-2 space. That said, we must still live with
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two depressing prospects. The �rst is that our image of true creativity threat-

ens to become somewhat emaciated. For the important conceptual innovations

are just those which bring what was previously an intractable type-2 learning

problem down into the space of problems solvable by type-1 methods. These

innovations turn problems which previously could not have been solved (in the

very real sense of being intractable to type-1 learning) into ones which can be

solved. We thus give a precise meaning to the distinction which Boden, in her

(1990) investigation of creativity, makes between ideas which as it happens did

not occur before and ideas which, in some real but elusive sense could not have

occurred before (see Boden, 1990; p.31-41.) But alas, on our account, there is no

intelligent means of searching for the re-codings which turn a previously type-2

problem into a type-1 format. Hard work, the constant juxtaposition of ideas in

the hope of analogical 'trajectory hopping', the blind endogenous exploration of

re-codings and sheer good fortune (genetic or otherwise) just about exhaust the

possibilities. Intelligent reduction of the new categories needed to suck hitherto

intractable problems into our cognitive ambit is, regretfully, just not to be had.

The second depressing prospect is that large tracts of genuine regularity in

the universe threaten to be forever unknowable to us, and probably to any

learning creature. For we can discover deeper (type-2) regularities only when

such regularities lie on a convenient trajectory of achieved representations. But

there is, we suppose, no reason to believe that all the interesting truths about

the universe will lie on such trajectories. If a regularity is type-2 and there
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is no natural sequence of problem solutions relative to whose representational

products it reduces to type-1, then it is e�ectively unlearnable. We are thus

quite dramatically cognitively closed (to use the terminology of McGinn (1989))

to phenomena of a certain well-de�ned type. Of course, we do not actively

perceive this closure, as our universe is conceptualized by a body of achieved

representations, and we continue to solve the problems de�ned in those terms.

If nature itself then looks systematic and incremental to us, it may be because

we are systematic and incremental learning devices who are cognitively closed

to truths which lie outwith cumulative problem-solving trajectories.

To sum up, we have scouted both good news and bad. The good news is

that despite the unexpected weakness of currently conceivable (type-1) learning

methods, there exist a variety of ploys which enable us to solve type-2 problems.

What all these ploys have in common is that they trade achieved representa-

tion against prohibitive computational search. The bad news is that there is no

general, intelligent way of seeking just those re-codings which would transform

a speci�c type-2 learning task so as to present a tractable type-1 regularity.

Instead, the re-coding manoevre will save us only in those cases in which the

required redescriptions are to be encountered along some natural problem solv-

ing trajectory. The boundaries of the genuinely learnable thus probably fall well

short of the boundaries of what is in principle representable by a computing

device such as the brain.
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Conclusions: Probing the Unobservable

It is widely understood that the `di�culty' of a particular computation varies

according to how the input data are presented. With the data presented one

way, achieving particular computational e�ects may require elaborate and ex-

pensive processing. With the data presented di�erently, it may be possible to

achieve the same e�ects much more straightforwardly. (For a classic discussion,

see Marr, 1982, p.21.) What is less well understood is the e�ect of this computa-

tion/representation trade-o� within the learning paradigms. We have suggested

that existing learning algorithms tend to rely predominantly (and in some cases

exclusively) on the extraction of a speci�c type of regularity from a body of

input data. This type of regularity lies close to the surface of the training data,

in the form of pronounced frequency e�ects and is thus fairly straightforwardly

extracted by a variety of strictly empirical methods. Some appearances to the

contrary, the extraction of type-1 regularities is really all we currently know



trick by which inherently weak learning devices regularly solve apparently tough

type-2 problems?

The trick, we suggested, is to trade representation against computation; to use

luck, genetic evolution and individual type-1 learning to yield representations

which re-code the input sample and hence gradually transform the nature of the

learning task. Being computationally weak, we compensate by valuing represen-

tational richness and constructing long problem solving trajectories in which a

cascade of coding and re-coding is the essential prerequisite to e�ective learning.

Since no intelligent method of searching for the speci�c representations needed

to render a target mapping learnable exists, good fortune must play a major role

in our successful forays. But this reliance on good fortune begins to look less

counter-intuitive once we see (a) that evolution is itself a naturally incremental

species-level learning device, (b) that problems and solutions co-evolve (so we

never really seek a solution to a speci�c problem) and (c) that language and

culture provide us (the most successful explorers of type-2 problem space) with

an invaluablemeans both of preserving and building on each and every fortuitous

representational movement, and of recapitulating successful learning trajectories

once they are achieved.



data, and type-2 regularity which takes the form of non-chance frequency e�ects

in some re-coding of the original data. Type-2 regularities are tractably discov-

erable only if the input data is systematically re-coded so as to highlight certain

properties. Each such re-coding can be seen as e�ectively altering what is ob-

servable to the system in question. The basic task of higher cognition is thus

to progressively expand an organism's `observable' universe so as to suck in as

many useful, previously type-2, regularities as possible. Such expansion always

involves seeking and exploiting re-codings of the input data (representations)

which re-shape the search space for other interesting regularities. This process

is both e�ectively blind (unintelligent) and highly incremental. It results in

a cascade of re-codings most reminiscent of Karmilo�-Smith's hypothesis of re-

peated `representational redescriptions'. What we now see is why such a process

is rapidly forced on us, courtesy of the surprisingly weak nature of achievable

(type-1) learning.

It is no surprise, then, that incremental learning, in a variety of forms, has

loomed so large in recent published attempts to expand the horizons of con-

nectionist knowledge acquisition. Despite important individual di�erences, a

commonthread links all such treatments. What they all add to standard connec-

tionist learning, is an increased opportunity to discover transformation factors:

processing episodes which re-con�gure the statistical task involved in learn-

ing a given mapping. Modularization, incremental memory expansion, batched



means to the achievement of this common, statistically intelligible end. And

the underlying trick is always the same: to maximise the role of achieved repre-

sentation, and thus minimize the space of subsequent search. This now familiar

routine is, as far as can we tell, obligatory. The computationally weak will in-

herit the earth, just as long as they are representationally rich enough to a�ord

it.
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