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First order flow only available

Lower limit on the distance-scaled transverse velocity.

Constraint on the immediacy of the surface patch.

Constraint on the immediacy of the plane.

Constraint on the spin.

First order flow and tilt available

The direction of the transverse velocity.

The immediacy of the surface path.

The immediacy of the plane.

The spin.

First order flow and the immediacy of the plane available

The direction of the transverse velocity (4 solutions, coupled to tilt).

The tilt (4 solutions, coupled to transverse velocity).

The immediacy of the surface patch.

The spin (two solutions).

First order flow and spin available

The direction of the transverse velocity (4 solutions, coupled to tilt).

The tilt (4 solutions, coupled to transverse velocity).

The immediacy of the surface patch (2 solutions).

The immediacy of the plane (2 solutions).

It is highly likely that a visual system will have some of this additional information

available to it. The ambiguous solutions can be resolved with only coarse extra informa-

tion.

It is clear that first-order flow, for even a single surface patch, can contribute much of

the information needed for the control of actions.
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(43)

(44)

(45)

(46)

These are the components of the deformation rate tensor in the D–S coordinate system.

For the time being, we choose an image coordinate system which has its x-axis aligned

with D and its y-axis aligned with S. Since we are working in a small patch round the

fixed point, where the sphere is close to the tangent plane (Fig. 7), we then have QD = x

and QS = y — that is,  etc. We can substitute Eqs. 43 to 46 into Eqs. 31

to 34 to get

(47)

(48)

(49)

(50)

The first three of these are identical to Eqs. 10 to 12. Fig. 4b shows that

, so that Eq. 13 is equivalent to Eq. 50.
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region about the line of sight the differences will be negligible. All the vectors are

defined in a frame of reference which moves with the observer.

In this frame of reference, the surface is translating with a velocity −V, and is rotating

with an angular velocity −ω. The velocity of the surface point is then given by

(36)

from which it follows (using ) that

(37)

This is the fundamental optic flow equation for rigid body motion.

The equation of the plane

The equation of the plane is simply

(38)

where p is the unit vector along the surface normal shown in Fig. 7.

The partial derivatives of flow for a planar surface patch

The next step is to differentiate Eq. 37 with respect to position in the image. To do this,

we write it in component form:

(39)

where ε is the alternating tensor and repeated suffices are summed. At this point, the suf-

fices refer to components along arbitrary axes. Differentiation with respect to a compo-

nent of Q then gives

(40)

and differentiating both sides of Eq. 38 gives

(41)

Substituting Eq. 41 into Eq. 40 gives an expression for the first-order flow in arbitrary

axes:

(42)

We now simplify this expression by choosing a coordinate frame aligned with the A, D

and S axes defined in Fig. 3. We want to evaluate the derivatives at the image of F, where

QD = QS = 0 and QA = 1. We also have pS = 0. From Fig 3b we have

and from Fig. 3b and Fig. 7 pD = -cos G. Eq. 42 then becomes
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(33)

(34)

There are two distinct solutions for θ, at 90˚ to each other, corresponding to the expan-

sion and contraction axes. The expansion axis is given by the solution with  and

.

The optic flow equation

We now need the equation for the optic flow vector associated with a point on the sur-

face. We denote by Q a unit vector from O, the point of observation, towards some point

on the surface. We will write the distance from O to the point as ρ, so that the position of

the point relative to O is given by ρQ. We define the optic flow vector associated with

the point to be

(35)

These vectors are shown in Fig. 7. The vector Q is the position of the image of the sur-

face point onto a spherical image surface of unit radius round O, so v is the velocity vec-

tor for that image point. Although most practical image surfaces are planar, in a small

R
1

2
--- v
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6 Derivation of the first-order flow equations

The equations for first-order optic flow have been derived in a variety of ways by differ-

ent authors (e.g. Waxman & Wohn, 1988). It is possible to use a variety of formalisms.

The following derivation aims to be succinct but reasonably complete and clear.

The Taylor series for optic flow

First, we need to make the connection between the first-order flow variables, as pre-

sented in Section 2, and the derivatives of optic flow. It will be convenient to write Eqs. 4

to 6 as a matrix equation:

(28)

or

(29)

where v is the differential optic flow vector, r is the position vector in the image, and T,
the product of the three 2 × 2 matrices shown in Eq. 28, is the first-order flow deforma-

tion tensor.
We can express any optic flow field v(r) as a Taylor expansion about the origin. This

looks like:

(30)

where the first vector on the right is the flow at the origin. We have taken this to be nulled

by tracking. We ignore the nonlinear last term on the assumption (that can be justified)

that it will be small for low-curvature surfaces and small surface patches. Comparing Eq.
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which gives us two possible values for φ, one equal to minus the other. The immediacy

of F is specified uniquely, from Eq. 22, but there are now two possible values for spin,

given by . There are four possible directions for the transverse velocity: from

Eqs. 13 and 20 we find , but as either of the two directions along the

expansion axis is possible, and we have uncertainty in the sign of φ, we can only state

that

(25)

where φ in the equation represents one of the possible values, the quantities stacked ver-

tically are alternatives, and all four combinations are allowed. (The angle π is 180˚.)

There are four corresponding directions for the tilt, with +φ/2 replaced by −φ/2 and vice

versa. The possible directions for tilt and transverse velocity given the perpendicular

velocity are shown in Fig. 6a.

The ambiguity may well be resolved by other information, which need only be

approximate. The spin might be well enough controlled that only one of the two values

for φ is acceptable, given R, or there might be enough information about the tilt or the

direction of the transverse velocity to rule out some of the possible combinations in Eq.

25.

R S φsin±
V

T
∠ θ φ 2⁄–=

V
T

∠ θ
0

π
φ 2⁄
φ 2⁄–

+ +=

VT

nD

VT

VTVT

VT

VT

VT

VT

nDnD

nD

nD

nD

nD

nD

Figure 6. The fourfold ambiguities in tilt and transverse velocity direction. The

dotted line is the shear expansion axis and the marked angle shows the value

found for φ assuming |φ| < π/2. (a) Perpendicular velocity VP is known. (b) Spin

ωA is known.

a

b
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Given tilt

It may be the case that we can estimate the direction of the projection of the surface nor-

mal, . This is called the tilt of the surface patch. For example, it might be known

from the texture gradient, from the direction of the image of a linear object perpendicular

to the surface, or from mechanical information. When the surface is a horizontal ground

surface, the last two possibilities are very plausible: the observer may be able to see a

vertical object or detect the direction of gravity. Using the axis of expansion, we can then

deduce the direction of the transverse velocity, and hence the immediacy of F and the

spin.

That is, from Eq. 13

(19)

and from this and Fig. 4b

(20)

We know θ from the flow and  from other information, so we know  and φ.

(The equations refer only to 2θ, so it does not matter that we arbitrarily chose one end of

the expansion axis to define θ in Section 2.) Note that φ can be negative. From Fig. 4b

(21)

so from Eqs. 10 to 12

(22)

(23)

Using Eq. 17 we can also find the immediacy of the plane:

(24)

We now have available a good deal of information relevant to the control of locomo-

tion. Even though we do not know the slant, we have the times to nearest approach both

to the fixated point and to the plane of the surface, and we know the direction of the pro-

jection of our velocity onto the image, so we can predict our future course relative to vis-

ible features. In fact, we know everything about our motion and the surface apart from a

scale factor in depth.

If we happen to know the surface slant, perhaps from the texture gradient, or because

the surface is the ground plane and we know where the horizon is, then we can go further

and determine the height-scaled dip, strike and approach velocities. It is by no means

certain, however, that these are necessary for control of many actions: the immediacies

and the direction of VT provide a great deal of predictive information as they stand.

Given plane immediacy

If the fixated point is on the ground surface, then plane immediacy will often be mechan-

ically specified. Indeed, VP will normally be zero. From Eq. 24 we can then obtain cos φ,

n
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to obtain expressions for G and the velocity components in terms of the flow compo-

nents. In particular, note that VS and VD always appear in combination with cos G, so a

change in the slant can always be exactly balanced by a change in the transverse velocity,

as far as first-order flow is concerned.

Nonetheless, first-order flow clearly carries a great deal of information. Even on its

own, the flow for a single patch places strong constraints on the surface slant and tilt and

the observer’s motion. If some additional information is available, constraining one or

more of the quantities involved, a great deal can be inferred. We now explore these pos-

sibilities.

No extra information

Since cos G lies between 0 and +1, we have a lower limit on the transverse velocity from

Eq. 11:

(14)

nD
VT

O

a

Figure 4. Relationships involving the axis of expansion. (a) The figure repre-

sents part of the image plane, seen from behind.The axis of expansion is shown

by the dotted line, which bisects the angle between nD and VT. Both of these

vectors lie in the plane of the image. Note that nD is in the direction of the

image of a vertical rod with its foot at F, and VT is in the direction of the image

of the future path of the observer. (b) The same diagram with dip and strike

components of velocity shown, and the bisected angle φ marked.

nDVT

O
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4 First-order flow from structure and motion

The equations linking first-order flow to the orientation of the surface and the observer’s

motion are quite simple. We assume that the image surface is perpendicular to the line of

sight, that it is roughly planar close to the fixed point, and that the image is formed by an

ordinary optical system approximating to a pinhole, but without inversion. We then have:

(10)

or (11)

(12)

(13)

In Eq. 13, ∠n means the angle between the x-axis and the vector n, measured anticlock-

wise from the x-axis. A derivation of the equations is deferred until Section 6.

Let us examine the form of these equations. First, note that all the velocities are

divided by h, so that h provides, in effect, a distance scale for measuring speed. The

dimension of every term in Eqs. 10 to 12 is inverse time.

We can see from Fig. 3b that  is equal to , or 1/τF, where τF is

the “time-to-contact” — in fact, the time to nearest approach to F if the observer keeps

moving with its current velocity. We will call 1/τF the immediacy of F. We can thus say:

where the strike and dip terms include the effect of cos G, the slant of the surface at F.

The relationship for θ is elaborated in Fig. 4.

The immediacy contribution to the dilation is simply an expression of the fact that

the image of an approaching object grows. The dip contribution expresses the stretching

that occurs as a result of changing foreshortening: as the observer moves along the D

axis towards the surface normal through F
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example, if you fixate a point on the ground just to the right of your feet as you walk

along, your head and eyes will rotate clockwise about your line of sight. We denote the

rate of rotation about the line of sight ωA, and refer to it as the spin. It is positive for a

clockwise rotation of the eye, looking from behind.

We are now in a position to state the central relationships.

F
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3 Approach, dip and strike

We now return to an observer moving relative to a planar surface, and fixating a point on

it. To make the example more concrete, we will take the surface to be the ground surface.

The optic flow depends on the instantaneous velocity of the observer’s eye, V. There are

various ways to represent this vector, but it will be convenient to use its components

along the A, D and S axes shown in Fig. 3. We make no use at this stage of the fact that

motion is normally parallel to the ground plane, as we want the theory to apply to any

surface.

The components of velocity along these axes are designated VA, VD and Vs, and will

be referred to as the
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where R is the rate of rotation. The formulae are illustrated in Fig. 2c. As with dilation,

these equations remain true however the axes are oriented. Positive and negative values

of R correspond to anticlockwise and clockwise rotation respectively.

A patch dragged along by a pure rotation clearly suffers no change in shape or in

area. A combination of equal parts of rotation and shear produces the kind of parallel or

lamellar flow pattern shown in Fig. 1e.

General first-order flow

General first-order flow is formed by simply adding the velocities from the three compo-

nents. This gives

(4)

However, we will not normally be able to work in a coordinate system conveniently
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The geometrical interpretation of these equations is given in Fig. 2a. They hold good

regardless of how the axes are oriented. The dilation rate D can be positive or negative,

corresponding to expansion or contraction respectively.

A patch of the image dragged along with a pure dilational flow suffers no change in

shape, but its area changes at a rate of 2DA, where A is its current area.

Shear

Pure shear, or deformation, is the simplest kind of local change of shape. It involves an

expansion along some axis and an equal contraction along the axis at right-angles. An

example is shown in Fig. 1b.

To write down the equations for shear, assume that the p- and q-axes of our coordi-

nate system lie along the expansion and contraction axes of the shear respectively. The

equations for the velocity are

(2)

where S is the rate of shear, and is always positive. The equations are illustrated in Fig.

2b.

A patch of image dragged along with a pure shear suffers no change in area, but is

squeezed along one axis and stretched along another. A combination of equal rates of

dilation and shear produces an expansion or contraction in one direction, and no change

in the orthogonal direction, as in Fig. 1c.

Rotation

Rotation is just what one would expect. An example is shown in Fig. 1d. Each image

point moves at right angles to the line joining it to the fixed point. The equations are

(3)

p

q

Dq

Dp

p

q
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Figure 1. Examples of first-order flow fields. The image velocity for each point

marked by a dot is shown by the length and direction of the attached line. The

fixed point is shown by a cross. (a) Pure dilation. (b) Pure shear. The axes of

expansion and contraction are shown by the dotted lines. (c) A combination of

equal rates of dilation and shear. (d) Pure rotation. (e) A combination of equal

rates of rotation and shear. (f) A general flow: the combination of a, b and d.

a b

c d

e f
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1 Introduction

Walking or driving down a street, you fixate a point on some nearby surface — the pave-

ment or a wall, say. The image of the fixated point is kept static on your retina, but the

image of the patch of surface round it changes as you move along, expanding or con-

tracting, deforming, and rotating. This change is the differential optic flow, and it carries

information about your motion and about the slant, tilt and shape of the patch of wall or

pavement that you are looking at. For example, uniform expansion of the patch is related
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