

Version 1.0 — 2 — 16/10/95

interacting with the computer rather than providing pre-prepared programs. Early work on

military computer systems had shown that it was possible to display and manipulate images

on a computer console, and researchers began to explore the possibilities of graphical

interaction between humans and computers.

Ivan Sutherland, a researcher at MIT Lincoln Laboratory, implemented a drawing system

named Sketchpad which both demonstrated the power of pictorial interaction and introduced

methods which are still being developed for contemporary graphics packages. These

included a hierarchical representation of pictures composed of sub-pictures, the notion of a

master picture and transformed instances of the picture, and the use of constraints to

specify attributes and relations (such as a two images being constrained to stay a fixed

distance apart when one or other is moved).

Doug Englebart and Augment

Doug Englebart, as a graduate student at the University of California in the 1950’s,

advocated the computer as an ‘augmentation device’, offering people new ways to study

problems, experiment with ideas and hunches, and test possible solutions. Computer

programs, instead of being designed to solve a single problem could be constructed as

toolkits, with parts that could be re-used and extended. The synergy which comes from

combining these tools into an integrated ‘workshop’ makes each tool considerably more

valuable than if it were used alone, and the combined effort of people working together on

the computer augments the abilities of individuals into computer-assisted communities.

 With colleagues at Stanford Research Institute in the 1960’s Englebart developed NLS

(oNLine System, later called NLS/Augment) which assisted people in working together on

tasks such as planning, analysis and problem solving. It provided many novel facilities, such

as active links between pieces of information, user-controlled windows, filters which

displayed files with a specified content, the ability to send electronic mail, and shared-screen

conferencing.

Alan Kay and the Dynabook

In the late 1960s Alan Kay wrote about his imagined self-contained knowledge manipulator

in a portable package the size and shape of an ordinary notebook. It would be able to store

and display text, drawings, music, and animations and the owner would be able to design

documents, compose music, create pictures and communicate directly with other people

through sound and image. Alan Kay named this notebook computer The Dynabook and in

1972 he suggested that “The Dynabook is now within reach of current technology”. As a

member of the Xerox Palo Alto Research Center, Alan Kay was uniquely placed to realise

his vision.

For ten years he and colleagues developed a series of personal computers (which they

called ‘interim Dynabooks’), and a computer language called Smalltalk to support the

construction and manipulation of dynamic objects. In April 1981 Xerox announced the 8010

Star Information system, a personal computer designed for office use. Although the Star

was a desktop machine rather than a portable package, it realised much of the Dynabook

vision. The Star was the first commercial computer to be designed around a graphical user

interface, which offered a consistent analogy of the top of an office desk with surrounding

furniture and equipment. The objects on the simulated desktop were represented by pictorial

icons indicating ‘in’ and ‘out’ baskets for electronic mail, file drawers, folders and other

Version 1.0 — 3 — 16/10/95

electronic metaphors for objects in an office. Operations on the Star were carried out by

direct manipulation of objects. For example, to file a document the user would move an

icon representing the document over a picture of a file drawer.

The novel aspects of HCI found in the Star computer, such as ‘the desktop metaphor’,

‘windows’, ‘icons’ and ‘pull down menus’, were brought to the mass market in the Apple

Macintosh computer. As well as providing a consistent ‘look and feel’ to its range of

computers, Apple set down guidelines for designers of Macintosh software which ensured

that the Apple’s investment in interface design and human-computer interaction would be

reflected in software produced by other companies. By the mid-1980’s companies such as

Apple, Microsoft and Aldus were developing software for small business and home use

which allowed people with no knowledge of computing, and little training in use of the

software, to perform complex and highly interactive tasks such as producing spreadsheets

and designing page layouts. The commitment of these companies to good practice in

human-computer interaction, and their subsequent commercial success, has meant that

research in HCI has an increasingly strong influence on commercial practice.

1.2. Interfaces

The interface to a computer is the combination of screen and interaction devices (such as a

keyboard, mouse and light-pen) which enable a user to interact with the computer. A main

aim of interface design is to produce interfaces which hide the complexity of the computer,

giving a user the impression of working directly on a productive task such as writing a

document or creating an illustration. Oroducti TLayoducdmassteruerur cing the documence design ncrea95 Tc
04 -15 Tf
15 TL
1sigalogy95 Tc
048 12 Tf
19 TL
038.307.637 Twf objeucds

s y l o o m a s r c o f f e r o n s i e n t c e p t o m e u s o n s o n t h e b i A p p f i t h e c o m p u t e e i m . o d f t s e d o c e x n s i c o m m a s a

Version 1.0 — 4 — 16/10/95

a mouse or trackball overcome the problem of writing on a vertical screen, but require hand-

eye coordination and take up additional desk space. Coordination is not a major problem,

however, and a child can learn to use a mouse in a matter of minutes.

There is much debate about the merits of different pointing devices, and factors affecting

their use include the time required to select a near or distant target on the screen, ability to

carry out fine movement for handwriting or drawing, muscular strain, and durability.

Shneiderman (Shneiderman, 1992) proposes a touchscreen for durability in public-access

applications, a mouse or trackball for accurate pointing, and a keyboard cursor when there

are a small number of targets. Joysticks offer a firm grip and easy movement but are slow

and inaccurate in guiding a cursor to a fixed destination.

A major limitation of all the devices described above is that they are intended for moving

around a 2-dimensional space on the computer screen. With the advent of 3-dimensional

simulations, shown on a computer screen or through helmet-mounted displays, there is a

need for input devices with six degrees of movement (movement through three dimensional

space plus forward and sideways tilt and rotation). Such devices include the DataGlove,

which fit over the hand and can register its position and gestures), the Polhemus tracker (a

wand whose position and orientation in space is transmitted to the computer) and the

spaceball (a small ball, mounted on a base, which can be twisted and pushed).

1.4. Communicating with a computer

An influential account of human-computer communication is Norman’s execution-

evaluation cycle (Norman, 1986). The user of a system starts with a goal to perform some

activity, forms an intention, and then specifies and performs some action. As the system

responds, the user perceives the state of the system, interprets that state and evaluates it with

respect to the goals and intentions. This leads the user to set further goals and continue the

interaction. The user’s goals are expressed in psychological terms (such as ‘check the

spelling of this word’) but the system presents its current state in physical terms (such as a

list of possible word corrections). The goals and the system state differ in form and content,

creating ‘gulfs’ that need to be bridged to ensure successful communication.

The gulf of execution represents the gap between a user’s intentions and the means by

which the can be carried out on the computer. The user must specify an appropriate

sequence of actions and then perform them by physical acts (such as selecting an item from

a menu) that the computer can interpret. To bridge the gulf of evaluation a user must

compare the state of the system, as presented on the computer screen or other output

devices, with the original goals and intentions. If the computer does not appear to have

satisfied the goal then the user must reformulate it (and possibly first attempt to undo the

action which led to the wrong response).

A system designer can narrow the gulfs of execution and evaluation by such means as

providing an interaction language which matches the user’s intentions (for instance by

she Pch mem.ayitpyaction lang.023 Tc
0 Tw
(spacees incluthe cmoue ga to set fmitteit (aions (foraiooons and 0.dx
ysicted onitpyystem stateinhe com69ter 1.69a menu	hem o the18of exr 3-nrstpret. To psych (sucssiblogical terms and the compus inte.054 Tc
2s,2ed
0.122logical termspt ab)'
-hespr 3-nrstoioooe wrong devicage whichthe user fies anc of all ttask.024 Tc
0.317 T21(intera-hesdxr 3-nhe un, 198 gthe s98 exampleossiblvingkm.itporai andydastobjs)Town s a

Version 1.0 — 5 — 16/10/95

position of the switches and the position of the lights, so that it is necessary to discover by

trial and error which switch controls which light. For an interface controlling a complex

industrial process the difficulties, and dangers, can be considerably greater.

1.5. Styles of communication

The cycle of activity and response creates a dialogue between the human user and the

computer which has some similarity with human to human conversation. Successful

communication depends on establishing a shared representation and carrying out a dialogue

to progress a task.

Command line interaction

The earliest interactive computers communicated via commands typed at a console, and

responded with printed output. Command line interaction is still found on powerful

environments such as the UNIX operating system because it gives the user direct access to

computer operations. These can be strung together into ‘scripts’ to carry out multiple tasks,

with the output from one operation being used as input to the next. The penalty for this

flexibility and power is that the computer offers little assistance as a conversational partner.

The user must remember the commands and the syntax required to combine them into

scripts. Command line interaction may be suitable for experienced ‘power users’ of a

general-purpose computing environment, but there are many tasks, such as drawing, where

issuing commands to the computer is tedious and unintuitive.

Menus and WIMP interfaces

Menus package together commands into a list from which one or more can be selected.

Styles of menu include ‘pull down’ (where selecting a header word causes a menu to appear

below it), ‘pop up’ where the menu appears beside an item selected on the screen, ‘walking’

(where selecting a menu item can cause a sub-menu to appear beside it), and ‘pie’ (where

the menu radiates out from a central point). Menus overcome some of learning and memory

problems of command line interfaces, but do not offer the power of combining commands

into program-like scripts.

Menus form a part of WIMP (windows, icons, menus, pointers) interfaces. The screen

displays a number of overlapping, bounded windows and a pointing device such as a mouse

directs a cursor to one of the windows. Menus allow commands to be directed to the

selected window and icons can represent commands or objects (such as ‘closed’ windows)

in pictorial form. Other elements, such as ‘buttons’, ‘palettes’ and ‘dialogue boxes’ allow

the user to communicate in a variety of modes.

Natural language

Some tasks, such as dictating a memo, would clearly be made easier by speaking to the

computer and having the spoken word translated directly into text. Speech input may also be

valuable for public-access systems, where there is limited, information-seeking

communication, such as timetable enquiries or tourist information. Early natural language

interfaces were limited to single word input, and had to be trained to recognise the speaker’s

voice and intonation. More recent systems can recognise continuous, slowly-spoken speech

and require less or no training. Natural language offers new forms of interacting with

machines, such as by telephone conversation, but the apparent ease of spoken conversation

hides the difficulty of conducting a useful dialogue. A computer application is designed to

Version 1.0 — 6 — 16/10/95

perform a restricted task, such as giving tourist information, and cannot behave like a human

conversational partner. Either the user must adapt to the limited linguistic capabilities of the

computer (by guessing what language forms the computer might recognise and rephrasing

commands until they are accepted), or the computer must direct the dialogue leaving the user

to give limited responses such as ‘yes’, ‘no’ or numerals.

Pen input

Software for the automatic recognition of handwriting has encouraged the development of

pen interfaces, which allow informal communication with the computer through writing,

sketching and gesturing. A form displayed on the screen can be filled out by writing

responses using a light-pen or stylus which are then converted into digits or words. A hand-

drawn diagram can be tidied by converting roughly drawn shapes into exact straight lines,

circles and boxes. A gesture, such as moving the stylus back and forwards over an object

can be interpreted as a command, such as ‘delete this object’. Pen input is slower than typing

for simple text input, but it opens possibilities for ‘informal interaction’ with the computer

through sketches and gestures.

Direct manipulation

Direct manipulation describes the manipulation by pressing, dragging, and re-shaping, of

objects displayed on a screen or in a simulated ‘visual world’. Instead of commanding the

computer to perform an action, the user performs the action directly on the simulated object.

Virtual reality , in which the user is placed in a simulated world presented on a screen or

through helmets with miniature displays for each eye, is an extreme form of direct

manipulation, where the objects in the simulation can be manipulated as if they were in the

real world. But direct manipulation is not restricted to everyday objects. The same interaction

techniques can be used to operate on diagrams, charts and documents. Direct manipulation

can provide the user with a rapid response to actions and can lessen the gulf of execution and

evaluation by allowing the system state to be changed directly, rather than obliquely through

commands.

c a n p r s . T h e
 0 . 0 f a c d n w i t r i s d d d i p a r t n 0 . 0 g u e “ y w e r e a m c a n b e 3 9 T e s t r i f i t c r e e n c a n b e o n v e r s h o r m m e
 0 . 0 2 7 T c
 0 . 4 7 1 T w 0 7 m a n i p u c D i r t h e p o r p a r ” t h e 3 7 1 . 0 f a c d n a n i p u r e f o n a g e e g u e “ e n c o n v e p t e n c t s . T h e t h e u s i k e a r e e n f o g t h e s 0 1 T c
 1 4 8 T w
 (c a n p r e t p r o u T e . . . ” t . 0 2 7 T c
 (t o g i T d
 (D i r e c t M e t h o d s m m a n d i n g i o n w i t h t e n c b e t r i s p m e n t o l d p h e u s t i m b i 0 a r e e n i m a r d i a c y r e c t) T j
 0 . 0 0 6 T c
 5 3 r m s t . d 8 v k s , s u c h 5 2 9 a n i p u l a t i o n , w h e r e 3 7 1 e r w e x n g , d r v e
 0 . c a e c t 0 i t 5 a a g e f o r m s s a m e s 0 f a c c l u u s 0 0 6 T c
 8 6 1 0 1 2 T f
 0 . 8 2 4 3 5 5 . 7 9 2 0 . 4 5 8 T w 8 (D i r e c t e t a n b m t r i s b y . 0 3 3 T c
 1 2 7 1 7 1 8 5 5 . 7 9 2 0
 (D i r e c t s t r e x t . 0 3 3 T c
 0 . 2 8 3 T f
 7 0 . 3 9 4 3 9 . 7 6 0 2 0 . 4 5 8 T , i n w t h e o b j e c t e r f o r m s t h e a c e n e t h r g e e g e c t e o n d n d c a n l e n i p u l a a n d e n i t i o e r a n i p c t i T m T c n g) 0 8 6 r m s t 3 9 . 7 6 0 2 0 v k s , s u c h a 9 a n i p u a r e s n) '
 0 i o p e e t a u c h a c u m e n n a n i p u i c a t i o n w i t h t h e c o m T c n g) 1 (, 1 2 T f
 0 . 8 2 4 2 8 T w 8 0 . 4 1 6 / 1 0 / r m s i r e m T c n g) 0 7 2 8 3 T f
 7 0 . 3 9 4 3 2 w
 (0
 0 . 4 5 8 T w 7 0 5 , i n w t h e u s m a n a c t e r t l e x , . 0 3 3 T c
 5 2 7 1 7 1 8 1 3 c
 (c o v k s , s u c , i n e s n) '
 0 8 a h t E L
 (s ‘ d e l e t a r r e f l i g h t - m e e t f) '
 0 . l e e a r a n d g e o n t i x t i d a t a b a s t h) a g r a l i k e x e c u t 0 . 0 2 T c n g o m m a n e r f o . 0 2 7 T c 4 8 9 , 1 2 T 6
 2 3 T L
 1 c o n v e r 1 . 6 . C c a t i o n w i t s y s t h e l m e t m p u t e r) '
 - 0 . 0 5 6 c
 1 4 R 8 1 2 T f
 1 9 T L
 0 . 5 6 T w
 1 (m a n i p u A s t e r) '
 - 0 . s i n t h e

Version 1.0 — 7 — 16/10/95

Version 1.0 — 8 — 16/10/95

2.1. Applying psychology to design

A computer system which interacts with a human user should take account of the properties

and limitations of the human mind and body. The nature of the human mind has been

studied by successive generations of psychologists, and some results of this work are

directly applicable to system design.

Memory

Findings from research on human memory that could influence computer system design

include recency and primacy effects, chunking, and the associativity of semantic memory.

Information in short term memory decays rapidly and if items are presented in serial

order, those items towards the end of the series will be remembered well for a short period

of time (the recency effect) and items at the start of the series will be remembered well for a

longer period of time (the primacy effect), and items in the middle of the list will be less

well recalled after a short or longer delay. This suggests that list presentations, such as ‘pull-

down’ screen menus, should be organised so that less important items are placed in the

middle of the list or, if all items are important, then the user should be given assistance in

recall and selection.

Miller’s work (Miller, 1956) suggests that human retention of short term information is

limited to around seven meaningful chunks. Thus, if information on a computer screen can

Version 1.0 — 9 — 16/10/95

learning or invention by providing external representations of associative memory, allowing

learner, writer, or designer to set down ideas as visual notes on the screen and to associate

them by drawing labelled links.

 Perception

A computer assaults the senses and demands a high level of attention. Unlike a book, it has

an active light-emitting display; unlike a television, it requires the user to sit close to the

screen and interact with it. Helmet mounted virtual-reality displays have been claimed to

cause fatigue and disorientation after ten minutes of use. The ability of the computer to abuse

the senses means that especial care should be given to designing interfaces which

complement human perception. Visual acuity is the ability to distinguish fine detail. Acuity

increases with brightness so, in general, a bright screen will be more readable than a dark

one, and dark characters on a white background will be more readable than light characters

on a dark background. But high luminance displays are perceived to flicker and, since flicker

is more noticeable in peripheral vision, then the larger the screen the more it will appear to

flicker.

The choice of colour for displays is fraught with difficulty. When colour displays first

appeared, programmers splattered primary colours on the screen, hoping to make them

more attractive, but generally causing confusion and headache. Different colours are

Version 1.0 — 10 — 16/10/95

forms an intention and then specifies and performs and action, so considerations of speed

and accuracy are generally more important.Fitts’ Law (Fitts, 1954) states that the time torats+ toraa target 0.11us8 eed

Version 1.0 — 11 — 16/10/95

offered ways to reduce time and effort by, for example, invoking commands directly from

the keyboard rather than using a mouse and menu.

2.2. Using psychology to create new models

Version 1.0 — 12 — 16/10/95

novices and experts tend to start from a general problem goal and refine it into sub-goals and

down to lines of program code, but novices tend to expand one part of the problem down to

its lowest level before starting on the next part, whereas experts generally consider the entire

problem before developing it to a deeper level.

Computer games have formed the basis of studies of motivation (Malone, 1981) and

collaboration and conflict (Hewitt, Gilbert, Jirotka, & Wilbur, 1990).

As people begin to use computers as an everyday tool to augment their intellect, to extend

their memory and to distribute cognition amongst a group of co-workers, this has led to the

study of computer-augmented and computer-mediated cognition.

3. Modelling Human-Computer Interaction

Models of human-computer interaction serve much the same purposes as architectural,

scientific or engineering models. They can be used to predict behaviour, to assist in design

and to evaluate competing theories and designs. Where they differ is in the importance given

to modelling human cognition. Understanding the psychology of the computer user is

important to creating systems which solve interesting problems, respond in appropriate

ways, and are engaging and easy to use.

There has been much confusion in the literature about the types, names and purposes of

models of HCI. Young (Young, 1983) attempted to sort out the mess by suggesting two

types of models – models of the user, and models of the computer – which may be held by

different entities: designers, researchers, computer systems, and users. Thus, a researcher

may develop a model of a user in order to understand the psychology of computer use, or a

computer may hold a rudimentary model of its user so as to offer individualised help or

guidance. The models with most significance to HCI are the designer’s model of the

computer, the designer’s model of the user, and the user’s model of the computer.

3.1. The designer’s model of the computer

A software designer has direct control over the form and function of the software, but of not

the people who use it, so designers’ models of the computer tend to be more detailed and

formal than those of its users. Software descriptions can broadly be divided into syntactic

models concerned with the structure of the dialogue between user and machine, and

semantic models

d u7plest syntactic models describe the desired states of the computer system and

, with each

Machine.

Version 1.0 — 16 — 16/10/95

to deliver an electronic mail message then the message is usually returned to the sender with

detailed diagnosis of the error. The diagnostic information is given in terms of gateway

computers and message handling programs, far from the image of electronic mail as a

postal system. Studies of breakdowns in human-computer interaction, and the user’s

subsequent attempts at repair can be valuable in revealing people’s (sometimes surprising)

mental models of technology.

4. System development

The conventional approach to computer system development is to split it into a number of

discrete stages, leading up to the finished working product. Definitions of the stages vary,

but they usually include:

requirements analysis, which describes the purpose of the system along with the main tasks

it has to perform,

system design or functional specification which specifies how the tasks are to be performed,

and breaks the system down into components which either need to be programmed or

adapted from existing software,

detailed design where each component of the system is described in sufficient detail that a

programmer can code it,

implementation in a suitable programming language,

integration and testing of the different pieces of program,

maintenance of the system, by correcting errors and updating the software to cope with

changes in hardware and requirements.

This staged or waterfall approach was introduced to assist the development of large

corporate systems such as payroll packages, which typically have tight specifications, large

teams of programmers, and very little interactivity. The basic principles, of ensuring that the

software meets requirements and that it should be well integrated and tested, apply equally to

payroll packages and painting programs, but the main difference is that the operation of

highly interactive systems cannot be fully specified in advance of implementation. Any

reasonably complex interactive program will be used in ways unforeseen by its designers.

For example, spreadsheet programs were originally introduced to ease the job of repetitious

calculation, but since their introduction users have adopted spreadsheets for forecasting,

visual presentation of information, database management, timetabling, and many other

purposes.

User-centred design is a general term for a design process which considers the needs of

users in the design of interactive systems. A major industry has grown around the waterfall

method of software development, with structured design methods such as JSD (Jackson

Structured Design) and SSADM (Structured Systems Analysis and Design Methodology)

promoting a strict discipline of design and testing. By contrast user-centred design is

inherently messy, based on imprecise psychological models, and unpredictable, relying on

Version 1.0 — 17 — 16/10/95

designers to respond to users’ demands. Not surprisingly, there have been attempts to

reconcile the two, by adapting the waterfall model to the design of interactive systems.

4.1. Adaptations of the conventional software development method

Usability engineering provides information to guide software development by specifying

usability metrics which the finished system should satisfy. Usability metrics are normally

quantitative measures in the areas of learnability

Version 1.0 — 18 — 16/10/95

describe in what order and under what conditions the sub-tasks are performed. Figure 2

shows a task hierarchy for making cups of tea (from (Dix, et al., 1993)).

Figure 2. Task hierarchy for making cups of tea (from (Dix, et al., 1993))

The analysis may then go on to produce taxonomies of the objects and actions involved in

the task, accounts of the goals of a person engaged in the task, and plans for accomplishing a

goal.

To carry out a task analysis requires detailed observation and recording of people engaged

in appropriate activities. A video recording can reveal the structure and sequence of activities,

but other methods are needed to infer a user’s goals and plans. One general and useful

technique is protocol analysis. A person is asked to talk about their intentions and plans at

the same time as performing the task. These concurrent verbal protocols are recorded and

matched against the activities, to give an understanding of not only what activity is being

performed, but also why it is being carried out, for what purpose and to achieve what goal.

Task analysis can inform system design by showing the structure and sequence of a task,

such as composing a document or designing a building, which could be supported by a

computer. It can also carried out for people working with computers, to measure usability or

to study problems and breakdowns in performance.

Rapid prototyping is one of a number of methods to involve eventual users in the early

stages of design. One or more mockups or prototypes are constructed which exemplify

some aspects of the system, such as alternative interfaces or different presentations of the

data. The prototypes may be quite simple. They could be in the form of sketches of an

Version 1.0 — 19 — 16/10/95

interface, ‘story-boards’ or ‘slide-shows’ to show a sequence of actions. These prototypes

are shown to users, for comment, more systematic surveys and comparisons, or to raise

users’ understanding and enable them to contribute to further design. Rapid prototyping

environments, such as HyperCard, allow screen displays to be constructed rapidly using

screen drawing tools, and then given limited functions, such as allowing objects on the

screen to become buttons which, when pressed, cause a move to another screen display. The

original rapid prototyping tools required the mockups to be thrown away once they had been

tested, but more recent development environments offer more powerful programming

languages, allowing the mockups and early prototypes to be developed into full systems.

Rapid prototyping is one method employed in the iterative approach to software

development, which maintains that, unlike conventional software development, the design of

interactive systems is not primarily concerned with specifying the functions and input-output

behaviour of the computer, but with fitting the computer into the plans and interleaved

activities of a human user. Not only are the plans and actions of users of paramount

importance to the software designer, but they are inherently ill-defined. The art of iterative

system design is to anticipate the many ways in which the system might be used, and to

adapt the system to suit the users’ needs as they become identified.

5. Evaluation

Evaluation of HCI is concerned with making judgements and measurements of the usability

and potential usability of interactive computer systems. an evaluation can be carried out at

any point in the software lifecycle: to choose between competing requirements, to decide

what features and functions should be included in a proposed system, to validate the system

with respect to the requirements, to verify that the system meets the specification, to

compare different systems of implementations, or to provide metrics such as learnability,

ease of use, and speed of operation. The type of evaluation can range from formal measures

of usability, to ensure that the system meets industry standards, to offering the system for

informal comment.

The Open University Guide to Usability (The Open University, 1990) classifies

evaluation methods into five categories:

Analytic evaluation uses semi-formal methods, such as task analysis, to predict the

performance of expert users of a system. It allows designers to predict the performance

of users in terms of the physical activities and cognitive operations they must carry out to

perform a given task. It can be applied early in the development process, reducing the

need for iterative prototyping, but it should be used with care since it is intended to model

the performance of an ideal user carrying out tasks without error.

Expert evaluation calls on people who are experienced in interface design or human factors

to make judgements about the usability of the system and to suggest improvements. This

can range from demonstrating the system to colleagues for informal comment, to

presenting a set of

16/8ut to

Version 1.0 — 21 — 16/10/95

They can reveal breakdowns in understanding or communication caused by system failure

or human misconception, and they can suggest new areas of concern to a system developer

(such as the importance of tactile feedback). But the amount of data collected from such

studies can be overwhelming, and there may be no guarantee that a detailed investigation of

one working environment can be applied to the technology set in a different situation.

The best conclusion is that usability measures and situated studies can inform system

design, but there is no substitute for the heuristic knowledge and experience of experts in

HCI.

6. Beyond Human-Computer Interaction

The phrase Human Computer Interaction invokes an image of a person sitting at a console,

communicating with a computer program. That image fits only one aspect of computer use

and is becoming increasingly inappropriate. Lawrence Tesler, in one of a perceptive series of

article on computer networks in Scientific American, (Tesler, 1991) describes four

paradigms of computing, associated with the four decades from the 1960s to 1990s (see

figure 3).

Version 1.0 — 23 — 16/10/95

meeting reported feeling more lively and confident when expressing themselves in a

computer conference.

CSCW brings a social and organizational dimension to human-computer interaction.

Computer-mediated communication is less rich than face-to-face discussion, lacking the

visual cues that signal, for example, impatience, annoyance, and dissent. Partly as a

consequence, people in a computer conference took longer to reach a consensus than an

equivalent face-to-face group, and they tended to express more extreme opinions. On a

wider scale, communication by computer can alter patterns of work and the exercise of

power within an organisation. The free sharing of information and frank exchange of views

which typifies network discussion may threaten established management and information

channels within an organization. On a larger scale, worldwide networks provide an

‘information anarchy’ across political boundaries.

The Internet already links together several million users on more than 300,000 computers

in around 30 countries. An Internet user can send mail to any other user, connect to remote

machines, and share work across the network. The Mosaic software gives a global hypertext

network to each Internet user, so that a single menu of options might offer satellite weather

maps, catalogues from major academic libraries in the United states, and a program to

search for the email address of any user of the Internet. Clicking one of these options will

automatically connect to the relevant computer and run software to display a map, show a

library catalogue index or return an email address.

The information carried on Internet and the services it provides are not managed by a

central agency, but are contributed by individual sites and users. Access to such a wealth and

diversity of information can be seen as overwhelming (there are thousands of ‘newsgroups’

on the Internet, each contributing a hundred or more messages a day), threatening (people

throughout the world can exchange politically and socially inflammatory messages), or

liberating (computer networks cut across established boundaries of power and influence).

New social and technical challenges include finding ways to allow colleagues who have

never met face to face to work together productively, developing ‘information rejection’

methods to filter out unwanted information, and providing mechanisms to manage the

electronic pathways, to stop them being choked by an exponential growth in communication

or by the deliberate sabotage of computer viruses.

6.3. Autonomous agents

As networks grow beyond the comprehension of any individual, computers will play an

increasing part in retrieving information and managing interaction. Autonomous agents are

programs which assist with some computer-based task, such as arranging a meeting,

finding a document across computer networks, or filtering email according to priority. A

user might ask an agent to arrange a meeting with selected colleagues around a given date.

Once the agent is activated, it carries out the job of arranging a meeting autonomously. It

consults the on-line calendars of the colleagues, finds a range of dates and times, suggests a

suitable time and venue to the colleagues by mail and, when agreed, confirms the

arrangement.

The style of interaction with an autonomous agent is very different to a command

language such as DOS, or the point and click of direct manipulation. Rather than issuing

commands, the user specifies needs and constraints, for example by partially completing a

form or by indicating ranges on a scale. The interaction is one of request and negotiation. An

Version 1.0 — 24 — 16/10/95

autonomous agent requesting a meeting with the company director may need to ask and

respond in a very different way to one which negotiates with a colleague. Computer etiquette

and the micropolitics of organizations are new challenges for software designers.

6.2. Ubiquitous computing

In time, the computer may fade away altogether. An average house already has ten or more

microcomputers. They are embedded in washing machines, video recorders, telephones,

remote controllers, thermostats, clocks, microwave ovens, door bells, cameras, toasters, and

electric shavers. We do not notice them as computers because they are programmed to

perform a restricted task and because their interface or system image is that of a familiar

consumer device. However, they use general-purpose computer chips and in the future they

will perform a wider range of tasks, such as providing diagnostic information, or

communicating with other domestic appliances.

Ubiquitous computing can mean giving everyday objects computing power while

retaining their familiar forms. A pad of paper might transmit what is written on it, a

telephone might provide a printed transcript of a conversation, or a window might show an

image of the scene outside some hours before. Or it can refer to the seamless integration of

computer and non-computer objects. Xerox EuroPARC are developing a DigitalDesk to

demonstrate the movement of information between paper and computer. They have

suspended a video camera and a projector above an ordinary desk, so that electronic

documents can be projected onto the desk, and paper ones can automatically be digitised into

computer text. Software connected to the camera will be able to recognise hand gestures, so

that a person working at the desk can move the projected documents around just as they

would push sheets of paper.

Perhaps the consumer device which will change the most as it is invaded by the computer

is television. Digital television will combine the interactivity of computer games with the

image quality of television opening a vista of ‘edutainment’ from interactive soap operas to

self-guided tours of the great museums. It will demand a new range of skills, combining

television production, electronic art, and software design and it may provide a new meaning

to ‘human-computer interaction’, as millions of people simultaneously participate in an

interactive television production.

6.4. The challenge of human-computer interaction

Human-computer interaction is a new discipline, and it has had little opportunity to mature,

because the nature of human interaction with computers is changing so rapidly. At worst the

literature on HCI is a set of anecdotes and good intentions, but at best it amalgamates the

psychology and technology of computing, begins to turn software design from an art into a

science, and offers guidelines for good practice in developing and deploying computer

systems. It has responded to new topics such as user-centred design, and computer

supported cooperative working and it has informed the design more usable computers such

as the Apple Macintosh. It must now address both technical issues such as network

integration and compatibility of software, and the broad areas of social interaction,

organizational computing, and the ubiquitous computer.

Version 1.0 — 25 — 16/10/95

7. References

Apple Computer Inc. (1987) Apple Human Interface Guidelines: The Apple Desktop

Interface. Reading, MA: Adison-Wesley.

Baecker, R. M., and Buxton, W. A. S. (1987) ‘An Historical and Intellectual Perspective.’

In R. M. Baecker & W. A. S. Buxton (Eds.), Readings in Human-Computer Interaction

San Mateo, California: Morgan Kaufman Publishers.

Card, S., Moran, T. P., and Newell, A. (1983) The Psychology of Human-Computer

Interaction. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Card, S. K., Moran, T. P., and Newell, A. (1980) ‘The keystroke-level model for user

performance time with interactive systems.’ Communication of the ACM, 23, 396–410.

Diaper, D. (1989) ‘Task Analysis for Knowledge Descriptions (TAKD); the method and an

example.’ In D. Diaper (Eds.), Task analysis for Human-Computer Interaction (pp.

108–159). Chichester: Ellis-Horwood.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (1993) Human-Computer Interaction. New

York: Prentice Hall.

Fitts, P. M. (1954) ‘The information capacity of the human motor system in controlling

amplitude of movement.’ Journal of Experimental Psychology, 47, 381–391.

Flower, L. S., and Hayes, J. R. (1980) ‘The dynamics of composing: making plans and

juggling constraints.’ In L. Gregg & E. Steinberg (Eds.), Cognitive Processes in

Writing: an Interdisciplinary Approach (pp. 31-49). Hillsdale NJ: Lawrence Erlabum.

Hewitt, B., Gilbert, N., Jirotka, M., and Wilbur, S. (1990) Theories of multi-party

interaction. Technical Report, Social and Computer Sciences Research Group,

University of Surrey and Queen Mary and Westfield Colleges, University of London.

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K. M. (1991) ‘User interface evaluation

in the real world: a comparison of four techniques.’ In ACM CHI ’91 (pp. 119–124).

New Orleans, LA: ACM, New York.

Jeffries, R., Turner, A. A., Polson, P. G., and Atwood, M. E. (1981) ‘The processes

involved in designing software.’ In J. R. Anderson (Eds.), Cognitive Skills and their

Acquisition Hillsdale, N.J.: Lawrence Erlbaum.

Kieras, D. E., and Polson, P. G. (1985) ‘An approach to the formal analysis of user

complexity.’ International Journal of Man-Machine Studies, 22, 365–394.

Landauer, T. K. (1987) ‘Relations between cognitive psychology and computer system

design.’ In J. M. Carroll (Eds.), Interfacing Thought: Cognitive Aspects of Human-

Computer Interaction (pp. 1–25). Cambridge, Ma.: MIT Press.

Maguire, M. C. (1990) ‘A review of human factors guidelines and techniques for the design

of graphical human-computer interfaces.’ In J. Preece & L. Keller (Eds.), Human-

Computer Interaction (pp. 161–184). Hemel Hempstead: Prentice Hall.

Malone, T. W. (1981, December 1981) ‘What makes computer games fun?’ BYTE, p.

258–277.

Miller, G. A. (1956) ‘The magical number seven, plus or minus two: some limits on our

capacity for processing information.’ Psychological Review, 63, 81–97.

Newell, A., and Simon, H. (1972) Human Problem Solving. Englewood Cliffs: N.J.:

Prentice Hall.

Norman, D. A. (1986) ‘Cognitive Engineering.’ In D. A. Norman & S. W. Draper (Eds.),

User Centred System Design Hillsdale, New Jersey: Lawrence Erlbaum.

