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The Use of Time Series Analysis for the



for the understanding of the basic MR physical processes and the analysis of

interesting research problems [31, 58].

In general, we can identify two main groups of time series analysis techniques:

(a) The time domain and (b) the frequency domain analysis techniques. The

time domain techniques have been investigated extensively by several researchers

and characterized as favourable towards the analysis of random processes [16, 26,

45, 46, 47]. On the other hand, frequency domain techniques have been found

mostly suitable for the investigation of the opposite to the random processes,

the so-called deterministic processes. Additionally, frequency domain analysis

has always proven to have advantages for periodic phenomena [12, 15, 36].

In this paper, we examine the issues relating to the problem of respiratory

motion artefacts in biomedical magnetic resonance imaging and spectroscopy,

through the use of time series analysis on MR artefacted data. In particular,

we introduce the use of the Lomb-Scargle periodogram for the analysis of

k-space data, and investigate its appearance and properties when applied to

MR images and spectra that have been \contaminated" by motion artefacts. In

the �rst part of this paper, we provide the reader with the appropriate theo-

retical background and discuss our motivation for using this frequency domain

technique as as



in many scienti�c �elds, mainly towards the solution of the signal detection

problem [27, 29, 32, 45, 55].

The signal detection problem, as described in various signal and image pro-

cessing textbooks [24, 45, 51, 55], can be formulated as follows. Suppose that a

physical variable H is measured at a set of times t

i

2

. This measurement results

in a time-series data, here denoted as fH(t

i

); i = 1; 2; 3; :::; Ng, which is called

the observed digitized signal. This data set is assumed to be the sum of a pure

signal and random observational errors. Consequently, the times series data can

be represented by the following expression [24]:

H

i

= H(t

i

) = S(t

i

) +N (t

i

) (1)

where S(t

i

) is the pure signal and N (t

i

) represents the observational errors

during the measurement of the signal. Because of the additive relationship

between the pure (or original) signal and the parameter N (t

i

) in equation (1),

the latter is often called the noise. For many applications of the signal detection

theory, the noise is assumed to be random [24, 38, 40, 56], which means that the

observational errors at distinct times are statistically independent. Furthermore,

in a signi�cant number of cases, the noise is usually assumed to have a normal

distribution with zero mean and constant variance �

2

o

, hence the term \Gaussian

noise" [24, 40].

In many scienti�c measurement applications, noise can badly corrupt the

observed signal. The main motivation behind the signal detection theory is the

solution to this problem, that is to establish the existence of a signal in the

presence of noise. In addition to this, researchers used the framework provided

by the theory to investigate other important problems. For example, one might

want to identify the presence of a periodicity in a \noisy" signal or estimate

the harmonic content of a periodic signal (either by the detecting the principal

signal harmonic or its multiple). Other interesting problems are the frequency

or period calculation of a particular signal harmonic and the removal of random

noise from the observed signal. In the context of the Lomb-Scargle formulation,
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can be evaluated at any frequency, it is traditionally evaluated only at a spe-

cial set of N

0

= N=2 evenly spaced frequencies [21, 23, 43, 52]. However, this

particular de�nition of the classical periodogram has two important problems:

1. The classical periodogram presents several statistical di�culties. This, in

simple words, means that the function P (!) of the periodogram is very

noisy [52, 57] and several techniques for further processing and optimiza-

tion are required.

2. There exists the major problem of spectral leakage [20, 44, 51]. This

means that for any periodic signal at a speci�c frequency, the power in

the periodogram does not appear only at that frequency, but also \leaks"

into other frequencies (a typical example of spectral leakage is the well-

known phenomenon of aliasing [14, 17, 18]). In the literature there exists a

signi�cant amount of work describing the problem of spectral leakage and

the related techniques used to overcome the \leakage" e�ects. [10, 33, 59].

Furthermore, this de�nition does not cope with data sets that are not evenly

sampled. For this reason, Scargle [54] derived a new de�nition of the peri-

odogram, which will be described in the following section. Because of some

interesting similarities to a power spectrum estimation technique that Lomb for-

mulated on 1976, we will call this periodogram the Lomb-Scargle periodogram.

2.3 The Lomb-Scargle Periodogram

As already mentioned in the previous section, the classical periodogram and

its statistical distribution have been successfully investigated for the case of

evenly sampled data sets. Usually, the distribution of the power spectrum has

an exponential shape. This has been shown for the case in which the evenly

sampled data set g(t

i

) is pure Gaussian noise [30]. A similar result has been

derived for the more general case of data sets with uneven sampling. Thus, a

modi�ed version of the classical periodogram has been de�ned by Je�rey Scargle

{ an eminent researcher at the NASA Ames Research Center { to cope with the

case of unevenly sampled data sets [54]. The power spectrum estimate provided

by the modi�ed periodogram has the same exponential distribution as in the

even-sampling case [11, 34, 49, 50, 54]:
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where i = 0; 1; 2; :::;N�1 is the index of the unevenly spaced observation times.

The term � can be de�ned by the following expression:

tan 2!� =

�

P

N�1

i=0

sin!t

i

! the case of

evenly sampled data sets.



Scargle argues



null hypothesis, the power spectrum P (!) (and in e�ect the power at a given

frequency) has an exponential distribution with zero mean and noise variance



2.5 The False Alarm Probability

It is desired to �nd a power level, z

o

, such that if the power exceeds this level,

the error in declaring a detected peak as being signi�cant will be very small.

The probability of this fault, p

o

, is called the false alarm probability of the

null hypothesis and it can be �xed to be a small number, so that the detected

peaks have high signi�cance. The above mentioned threshold power level can

be derived by the distribution in equation (12) and is given by the following

expression:

z

o

= � ln[1� (1 � p

o

)

1=M

] (14)

where M are the independent observed frequencies used in the calculation of

the normalized Lomb-Scargle periodogram.

For small p

o

, equation (14) becomes

z

o

� ln(M=p

o

) (15)

For example, if we take p

o

= 0:01, which means we have a 99% signi�cance

level, then z

o

is given by the following expression:

z

o

� 4:6 + ln(M ) (16)

We will use expressions (15) and (16) to identify the signi�cance levels of

the experimental results presented in the second part of this chapter.

3 Time-Series Analysis and Respiratory Motion

Artefacts in MR: The Reasoning Behind the

Use of the Lomb-Scargle Periodogram

As we have argued in a previously published study [6], the e�ect of motion in

spectroscopic Chemical Shift Imaging (CSI) is manifested in the appearance of

spectra as signal re-distribution and as an overall increase in the background

noise level. Our initial experience in both cardiac and hepatic

31

P MRS studies

on volunteers showed small (5{10%) but consistent improvements in the overall

signal-to-noise ratio (SNR) of the spectra when the Respiratory Ordered Phase

Encoding (ROPE) method was used. On the spectra, these changes appeared

to be visually more signi�cant in the level and the character of the noise, rather

than in the signal level itself. These visual observations have suggested the

importance of further understanding the source and appearance of motion arte-

facts in spectroscopic CSI investigations. Thus, we used the autocorrelation

function, a typical Fourier transform time-series analysis approach, to identify

the character of random and systematic noise (motion artefacts) upon both

2D-FT imaging and 1D CSI spectroscopic data. The selection of this tech-

nique was based on the opinion that the autocorrelation function of time series

data completely speci�es the �rst- and second-order noise statistics of Gaussian

processes [24]. We applied both the one-dimensional and the two-dimensional

versions of the autocorrelation function in data from phantom MRI and MRS

studies. The result of this time series analysis investigation showed high order

correlations arising from motion artefact e�ects. Furthermore, when comparing

8



the three cases of image acquisitions of a moving phantom, a static phantom

and a moving ROPE'd phantom, we identi�ed signi�cant di�erences in their

MR data autocorrelation functions.

Although these results were found promising at the time, all observations

were purely qualitative. There was still a need to quantify these results, so that

we could have precise information about the correlation of motion with any time

series analysis of the MR data. In order to satisfy this need we investigated time

series analysis techniques even further. The technique we adopted was the power

spectrum estimation of the MR data by means of periodogram analysis.

In the past, Weissko� et al. had applied the classical Fourier periodogram



bined for each data point. As



diameter) { was used for the creation of k-space data. We created image data

corresponding to image acquisitions for both stationary and moving objects.

Furthermore, we also acquired simulated data corresponding to images corrected

by the ROPE method. All k-space matrices that we constructed were of size

64 � 64. We reduced the 2D matrices to single 1D arrays of 4096 data points,

thus treating the FID signals in the data as a single time series signal, unevenly

sampled. These data points together with the corresponding observation times

6

constituted the input data for the normalized Lomb-Scargle periodogram. In

this case we evaluated the periodogram at 8,192 independent frequencies. No

prior processing of the data was performed, and the periodogram was evaluated

for the magnitude of the FID signals.

As well as using simulated data, we performed periodogram analysis on

actual experimental MRI and MRS data sets. All experimental work was carried

out on a Picker prototype MRI/MRS system, operating at a �eld of 1.5 Tesla,

at the Robert Steiner MRI Unit, Hammersmith Hospital, London.

The subject of the study was a simple phantom [7, 22], constructed with non-

magnetic materials (Perspex and plastic). This phantom consisted of a cylinder

(height 10 cm, diameter 5 cm), �lled with a CuSO

4

solution. A mechanical

device was designed to provide a variable vertical displacement of the cylinder.

The phantom was mechanically coupled by the use of a long shaft to a DC

step electric motor positioned 6 meters away from the centre of the bore of the

main magnet. The electric motor provided the driving mechanism that applied

periodic displacement on the phantom. The amplitude and the period of the

displacement could be varied in order to model the e�ects of human respiratory

motion. Figures 1 and 2 show the pro�le and semi-lateral photographic views

of the phantom.

We acquired data by using both 2D-FT imaging and 1D spectroscopic CSI

methods. Images and spectra were obtained for theforthesperio



Figure 1: Pro�le view of the experimental phantom

In the following section we observe representative results from our simulated

and experimental work.

5 Results

5.1 Periodogram Analysis on Simulated Image Data

We collected a set of representative periodogram results of 2D-FT imaging data,

originating from a simulated point-like object. In this set of experiments, the

object was moving with a motion amplitude set at 15 pixels. For each row

of the data matrices, data points were sampled every 0.04 msec of simulated

time at 500 msec TR intervals. These imaging parameters were kept constant

for all experiments. The only factor that was altered was the period of the

movement of the object. For four di�erent frequencies of motion, we compared

the appearance of the periodogram using data from the moving object and data

that was controlled by our implementation of the Respiratory Ordered Phase

Encoding (ROPE) method. These periodograms were further compared to the

appearance of the Lomb-Scargle periodogram of image data of a static object.

As mentioned in the previous section, the periodogram was evaluated at

8,192 independent frequencies, ranging from 0 kHz to the periodogram's exper-

imental Nyquist frequency, which for this case was 64 kHz

7

. For convenience,

we compared all results by studying the periodogram in a window around the

maximum observed peak.

7

The total simulated time of the imaging experiment was 32 sec. One can calculate the

periodogram's experimental Nyquist frequency by dividing the total number of points in the

data set by twice the total imaging time.

12



Figure 2: Semi-lateral view of the experimental phantom

The signi�cance of the power spectrum levels has been evaluated by using

the false alarm probability condition, as given by equation (14).
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to \put back" the artefact on the original signal. However, as seen in both real

(8.A) and imaginary (8.B) parts of the data set, lower harmonics exist within

the area of the main signal, although a successful ROPE correction has been

accomplished. This again may correspond to the inability of ROPE to correct

high-order ghosts and to deal with the e�ects of blurring.

The other observations made on the examples of data with di�erent matrix

size and averaged artefacted data are purely qualitative and prove once again

some known factors that increase or reduce the intensity of the motion artefact.

This result enhances our position that the Lomb-Scargle periodogram cannot

be used as a quantitative tool for assessing k-space MR data. Moreover, this

fact forbids the technique from being used as an indicator for the control of

the motion artefact. However, the results found in the case of MR spectroscopic

data are more promising. The visual observation of the periodogram of both the

artefacted and ROPE'd spectroscopic data proves that the observed noise levels

on spectra might originate from systematic errors as well. Our study showed

that the motion artefact in MRS may be characterized by three factors in the

Lomb-Scargle periodogram:

� The existence of signi�cant harmonics, additional to the power of the

signal.

� The reduced total power, observed on the maximum peak P (f

max

)

� The increased level of random noise.

The above indicators, although at this stage qualitative, suggest that the

Lomb-Scargle method could be more generally used as a diagnostic tool for

identifying other systematic errors in human in vivo spectroscopic experiments.

7 Conclusion

Our study strongly suggests that the Lomb-Scargle periodogram can o�er inter-

esting qualitative information, relating to the e�ect of motion artefacts in both

clinical MRS and MRI. Our observations, in particular for the case of MRS,

lead us to the conclusion that the Lomb-Scargle periodogram could be more

generally used as a diagnostic tool for identifying technical errors in human in

vivo spectroscopic experiments. At present, the fast algorithm calculates the

periodogram within a time span of four minutes, even for large data sets consist-

ing of 65,536 points. Appropriate code optimization can improve the calculation

time of the periodogram. Then, this technique can be used in real-time as a

quick diagnostic method of the state of spectroscopic systems. If necessary, the

MRS system can then be re-calibrated or an appropriate action to eliminate

systematic errors can be taken.

We believe that through this paper we o�er a new point of view in the

study of the respiratory motion artefacts in MRI and MRS. Moreover, we have

identi�ed a new technical diagnostic tool that can be further developed and used

to detect systematic errors in MR systems.
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