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Preface

Each year since 1988, COGS graduate students have been meeting at Sussex University’s conference

centre, the White House, located at the Isle of Thorns, near Haywards Heath. Over several days, students

are given the opportunity to give presentations on their wor
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Abstract Until now Artificial Life has paid very little attention to the problems of devel-

opmental biology. After listing some of the reasons why these problems might be worth
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In addition to division, every neurite has additional behaviours it can perform:

� It can die and disappear from the surface of the grid.

� It can move to a neighbouring cell provided that this cell is empty.

� It can connect to another neurite if there is one in its immediate neighbourhood. If both neurites

belong to the same neuron, that logically leads to a recurrent connection.

� It can connect to a retinal element or to a motor unit if it is next to one.

� It can remain idle.

The Causesof Neurite Behaviour

Which behaviour a neurite will perform at a particular time is the result of both its genotype (which

is the same for all the neurite of that net), its current neighbourhood and its history. Since all neurites

that interact have the same genotype, only the two last factors are responsible for their difference in

behaviour. The history of a neurite is mediated by the change in internal states which effectively provide

the neurite with some kind of memory. The internal state of a neurite is the conjunction of three arrays

of binary elements, each of which is characterised by the kind of events that causes it to change its state.

We call the slowest of these arrays the lineage register or L register. It is only updated at cell division
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� all Random Boolean Networks will produce a network whereas Dellaert and Beer have discarded

all networks which did not have a point attractor.

We feel that the properties of development which are important for our purpose, stem from all the

mechanisms which affect the way information flows in the system. It is therefore important to leave

a maximum of flexibility to the kind of information exchanged but also to the way this information is

distributed, exchanged and updated across the system.
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Inductive theory change should deal with the learned concepts - the currently entertained induced



this similarity, the MONK’s problems (Thrun et alii 1991) can be mentioned. The MONK’s are often

thought of as problems to be handled successfully by some form of constructive induction - AQ17-DCI

and AQ17-HCI are the early, and controversial examples. Now, although plain C4.5 performs very bad

in these problems, the -s option allows a far better result (see Quinlan 1993, chap. 7).

Attribute construction and destruction are the kernel of what is called constructive induction. In con-

structive induction, a detection-evaluation component assess the quality of the current attributes and can

be done either by somehow analysing the data alone or by making use of a selective (non-constructive)

learner (as C4.5). The selection routine is the redescription part of the process - the choice of operands

(set of previous attributes) and operators (operations among the selected operands) that will add new at-

tributes to the training set. Additionally, we can provide the selection module of a destruction procedure

whereby some (ground or constructed) attributes that are considered irrelevant are eliminated. There

is a variety of alternative methods both for the detection-evaluation and the selection routines as there

are different systems of constructive induction (see Kramer 1994 for a classification). Some systems

are provided with algorithm-fixed operators - like FRINGE (Pagallo 1989, Pagallo & Haussler 1990).

The hypothesis generated by a selective learner is assessed by the detection-evaluation and it is left to

the selector simply the task of choosing the adequate operands on the basis on the selective learner out-

put. In recent, more sophisticated constructive induction systems - such as CIPF2.0 (Pfahringer 1995a)

a non-algorithmic fixed operator for constructing new attributes is present. A set of operators is then

applied whenever they can be applied and the population of generated attributes is then assessed by the

detection-evaluation module. This allows the system to select which operator is needed for each learning

problem. In a system like CIPF2.0, each redescription step can involve different operators, allowing the

final hypothesis to be represented with a greater richness. The system aims to minimise both the hypoth-
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Abstract This paper reports on an intelligent debugging system (based on the plan calculus

formalism (Rich, 1981; Rich & Waters, 1990)) for automatically detecting and correcting

semantic errors in novice student programs written in ML. Its computer implementation is

called EMILY. We explain the overall structure of the system and give an overview of the

adopted technique for debugging single function programs. We also discuss the approach

that used to debug programs with multiple functions. Finally, future research work is pointed

out.

1 Introduction

This paper reports on an intelligent debugging system (based on the plan calculus formalism (Rich,

1981; Rich & Waters, 1990)) for automatically detecting and correcting semantic errors in novice student

programs written in ML. Its computer implementation is called EMILY. We explain the overall structure

of the system and give an overview of the adopted technique for debugging single function programs. We

also discuss the approach that used to debug programs with multiple functions. Finally, future research

work is pointed out.

2 The Overall Structure of EMILY

EMILY consists of three modules and two knowledge bases. These are the translation module (trans-

lator), the program understanding module (the chart parser), the bug detection module (debugger), the

plan library, and the reference library. Figure 1 shows the overall structure of the system. The translation

module is responsible for translating a student ML program into its equivalent surface plan1 representa-

tion.

DebuggerDebugged
Surface plan

Translator Surface plan   program
Student ML 

Reference library Plan library

CHART Chart Parser

Figure 1: The overall structure of EMILY
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The program understanding module accepts the surface plan o





or the wrong function is called by mistake ( we assume the wrong called function is called somewhere

else in the program and is correct). In this paper we only discuss these two cases mentioned. See the

program at the end of this paper which is an example where the is vowel function itself is correct, and

also is correctly called somewhere else (i.e., in the fem def function ), but it is incorrectly called in the

function masc def : the first call is correct but the second call has the wrong argument.

5.1 Identifyinga Call to a Function

During the debugging process, whenever EMILY tries to debug the current active function (CAF) for

the current active goal (CAG), it first checks whether the CAG is actually implemented by the CAF or



5.3 The Activation of the New Call

When a new call to a function is generated then EMILY transfers this call (in the format of the plan

calculus) as an input graph for the chart parser to parse. This entails the called function to be in-line

expanded and its surface plan is parsed. Recall that whenever the chart parser parses any elements of the

input graph (which is in from of surface plan), it checks whether it is a call to another function or not.

If this is the case, then the parser takes the surface plan of the called function and parses that. After the

chart parser has finished, then the current active goal (which EMILY was debugging the program for)

will be generated, and left in the chart. If this results in the generation of the high-level goal that we

started the debugging with, then the process recursively unwinds and the debugging process terminates,

otherwise EMILY continues the debugging process recursively.

5.4 Dealingwith a WrongFunction Call

If the task of the called function is different from the current active goal (CAG) and the plan representing

its task has covered the function, then this means that the current call to the function is wrong - the

student called a different function. In this case EMILY gets the corresponding call, and removes from

the chart all plans (fully or partially instantiated) that have been introduced by this call. Then it compares

the CAG with the known tasks of functions to find out which of them implements the same task as the

CAG. If it finds such a function then it generates a new call to that function (which should be called).

Having done that, the rest of process will continue as described above. It is worth stressing that when

EMILY locates the bug it repairs it as well. The repair is done at the surface-plan level and EMILY does

not concern itself with the pedagogical aspect of such repairs. That is, presenting the repairs to students

and tutoring them is left to the tutoring module of an ITS that will employ EMILY as its domain expert

module.

6 Experimentingwith EMILY

We have been testing EMILY on real student ML programs. In order to do this we have taken a corpus

of student programs. These programs were written to solve the problem of adding a definite article to an

Italian noun. That is, the task is to take a given Italian noun, determine its gender, and add an appropriate

definite article to the front of the noun. There are different rules for specifying each type of gender.

There are also exception nouns to these rules, and these are provided for the students. These programs

are written by students who took an ML functional programming course in autumn 1994 as their first



8 A sample program

val masc_fem_exc_list = [

("ambiente", true), ("mano", false),

("animale", true), ("bestiame", true),

("piazzale", true), ("brioche", false),

("comunista", true), ("sale", true),

("sole", true), ("totale", true),

("carne", false), ("chiave", false),

("mare", true), ("radio", false),

("mese", true), ("pane", true),

("nome", true), ("turista", true),

("paese", true), ("fine", false),

("legge", false), ("ponte", true),

("piede", true), ("camice", true),

("moto", false), ("automobile", false),

("biro", false), ("alce", true),

("programma", true), ("crisi", false),

("stazione", false) ];

fun is_vowel char = member char (explode "aeiou");

fun fem_def string = if is_vowel(hd(explode string)) then

"l'"^string

else "la "^string;

fun masc_def string = if is_vowel(hd(explode string)) then

"l'"^string

else

if "s" = hd(explode string) andalso

not(is_vowel string) then

"lo "^string

else if "z" = hd(explode string) then

"lo "^string

else "il "^string;

exception Unknown_gender

fun sgender x = case last(explode x) of "o" => true

| "a" => false

| _ => raise Unknown_gender;

exception Unknown_word

fun except (word,x) = if (mem x (word,true)) then true

else if (mem x (word,false)) then false

else raise Unknown_word;

fun ggender (noun,excptlist)

= except(noun,excptlist) handle ? => sgender noun;

17



fun gender noun = ggender (noun,masc_fem_exc_list);

fun singdef noun = if gender(noun) then masc_def(noun)

else fem_def(noun);

singdef "banca";

9 Summary

In this paper we sketched the overall structure of our intelligent debugging system for student ML pro-

grams. We briefly discussed its debugging approach for single-function and multiple-function programs.

We discussed how EMILY detects a call with a wrong argument and a wrong call to a function and how

it fixes such bugs.

We are experimenting with EMILY’s capabilities on real students’ ML programs. In this regard we

have included a sample of such programs, where each program consists of at least eight functions. We

delineated the future work, where we are going to generalize the adopted debugging approach of EMILY

to deal with other cases which may occur when debugging multiple function programs.









3.3 Incorporation of alternatinglearningmodes





Karmiloff-Smith, A. (1994). Transforming a partially structured brain into a creative mind. Behavioral
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Abstract An implementation is discussed where the application of Art





6 Conclusions

I hope to have shown that techniques from AI, which has perhaps been waning in its acceptability of late,

can be applied to real-life consumer software applications problems resulting in the twin benefits of ease

of use for the end-user, and better quality and maintainability of code by the development company.
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Abstract One way to try to overcome the difficulties involved in anaphora resolution when

designing natural language interfaces is to build a capability for control by the user into the

interface. The user can thus assess whether the interface is interpreting anaphoric references

correctly. Multimedia technology offers new possibilities to integrate such control by giving

the user feedback of coherence between the current input and the ongoing discourse. After

a general discussion of matters concerning the integration of visual and discourse informa-

tion, the paper will present two existing attempts to use multimedia techniques as described

above. It will then discuss particularly thorny aspects of anaphora resolution which might be



For instance, in natural language assisted graphics, several pictures can be associated with a single sen-

tence, because presupositions are a fact of life in natural language. Thus, a container is presupposed in

the sentence below:

(1)

The wine is on the table.

Similarly, a system for optical character recognition can benefit highly from syntactic knowledge struc-

tured into statistical models derived from part-of-speech transition probabilities. This can be further de-

veloped into systems which are able to fully analyse the stru



can point to a reproduction of a fresco and ask questions such as the one below, with the appropriate

response:

(3)

Who is she?

Madonna.

ALFRESCO also provides a module to give feedback to the user of the coherence found between the

current input sentence and the ongoing discourse. The user can thus interfere if misunderstandings occur.

This feature may prove invaluable in case the referent of an anaphoric pronoun is identified incorrectly.

3 Two suggestions

One difficult problem within the context of anaphora resolution is identifying referents which are chunks

of discourse. Such chunks vary in length, but they are not unfrequently quite long. The anaphor typically

used for this kind of reference are the demonstratives this and that, although the personal pronoun it

is employed for this form of anaphoric reference at times. A system would have initially to determine

whether the referent is an object, expressed by a noun phrase, or a discourse chunk. This may be made

a lot easier if the user is expected to use a pointing device to identify objects referred to. Whenever no

pointing occurs, the referent is not an object, but a discourse chunk.

Two difficulties persist however. The first one is that the user may occasionally not point to anything

in the screen, in spite of the fact that the referent intended is an object. This might be overcome by adding

a procedure which would generate a natural language message whenever the demonstrative pronouns are

used without association to pointing. The second is of course to identify the precise discourse chunk

referred to once the type of anaphora is ascertained. A feedback module would have to rely on fully pro-

cessed preceding discourse information to generate a referent candidate. It would be often necessary to

present summaries containing the gist of preceding discourse as resolution options to the user. Feedback

for this form of anaphora in multimedia interfaces clearly demands further research.

The second problem are collocations containing anaphors, such as that’s it or that’s right. It is often

easier to process such references as units, and this is certainly true in the case of the first one, where

separate referents for that and it are rarely the correct answer. A list of such collocations with typical

procedures for resolution may be created after appropriate real-language corpus investigations. Such list

would also help the system deal with the chunk-of-discourse anaphora type discussed above.

4 Conclusion

The idea of communicating system inferences concerning discourse processing to the user may go a long
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1 Introduction

The pattern-generating neural circuitry underlying rhythmic feeding behaviour in the pond snail Lymnaea

stagnalis is an ideal candidate for the neuroethological study of an entire biological neural network. I am

using computer modelling to learn more about the mechansims underlying the generation of this rhythmic

behaviour. This work is taking place in collaboration with another approach in which the circuit is being

reconstructed in cell culture, enabling the examination of synaptic and cellular properties in controlled

conditions1. The work on both projects is based on previous intensive anatomical, electrophysiological

and behavioural studies (for a review, see Benjamin and Elliot (1989)). With this combination of collab-

orating projects we will come closer to understanding this circuit; how it functions as a whole, and how

its activity is modulated to produce observable behaviour in the animal. This short paper explains the

approach.

2 FeedingBehaviour

Lymnaea is a browsing herbivore that feeds on submerged algal films or floating vegetation. During

feeding, the buccal mass performs a stereotyped series of rhythmic movements as depicted in the cartoon

shown in figure 1. This is repeated for hundreds of cycles as the animal moves over the food substrate,

typically moving its head from side to side. The cyclic movements, which result in food being scooped

into the mouth and swallowed, may be divided up into four main phases: three active, and one during

which the musculature is at rest. In vivo, each cycle is typically 3–5 seconds in duration. The three

active phases of the rhythm can be summarised as follows: An i



Protraction

Rasp

Intermediate

Swallow

Radula (tongue)

Food

Lips

Figure 1: Cartoon cross-section depicting the buccal mass movements in the three active behavioural

phases, plus the intermediate rest phase. KEY: Large arrows indicate the sequence of the behavioural cycle - small

arrows indicate movements of the buccal mass. [This cartoon is only meant as a simple representation, and as such belies

extensive behavioural work underlying the project.]

3 Electrophysiology

Cell bodies in Lymnaea are typically large (20-200µm) and readily identifiable from one animal to the

next, due to regular colouring and position in the ganglia. In addition, the number of cells involved

in this circuit is relatively small. These facts have made it possible to categorise nearly all the cells

involved, their synaptic connectivity and firing characteristics. Underlying the feeding behaviour is an

oscillatory circuit of interneurons which generates the rhythmic pattern driving the cyclic activation of

the motoneurons. The rhythmic output appears to be a collective property of the network rather than due

to the action of a single pacemaker cell. In addition, it is ma



Figure 2: CPG activity summary diagram

This figure constructed from many paired intracellular recordings illustrates the diversity of cellular properties in the CPG

network. KEY: On each feeding cycle, a different cell’s connectivity is indicated. The presynaptic cell is highlighted and its

synaptic connections shown by arrows. For example; the first trace to be highlighted is that of the slow oscillator modulatory

cell (SO). The arrows indicate chemical synapses with the N1



Figure 3: Modelled pattern activity driven by the Slow Oscillator (SO) cell. 2.5nA of simulated current

injection to the SO cell (throughout this trace) drives a pattern similar to that as seen in isolated preparations.

an arbitrary number of specifiable voltage-dependent conductances. Neurons are linked with modelled

chemical and electrical synapses. Post-synaptic potentials (PSPs) are modelled by the solution of a

second order differential equation and are dependent on the duration of the presynaptic spike. The

approach has been to start with a minimal model of the patterning network, and add complexity, one

cell at a time. Where specific biophysical properties are unknown, the overall firing characteristics of

the cell have been reproduced using a combination of appropriate voltage-dependent conductances. As

with the firing characteristics, PSPs produced from the chemical synapses have been modelled to match

data from intracellular recordings. The current model reproduces the observed physiological data on a

network level (output from the model shown in figure 3), including experimental observations such as

the pattern-driving ability of the N1m cells, and pattern-r
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LGN





Day Event

E23
Retinal axons are yet to arrive at the optic chiasm.

(Sherman, 1985, p352)

E30–E40
Correlated bursting activity begins (Wong 1994, per-

sonal communication.)

E32

First retinal axons reach the LGN. During next two

weeks, there is considerable overlap: most cells in

A and A1 are binocular (Sherman, 1985, p351)

E38
Functional synaptic transmission between ganglion

cell axon and LGN neuron (Shatz, 1994, p535)

E47 Segregation of retinal inputs into laminae begins.

E48 Loss of ganglion cells begins (Sherman, 1985, p353)

E63 Birth.

P10 Eye opening (Wong et al., 1993, p935)

Table 1: Timetable of cat retinogeniculate development. Da
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RBF networks could perform without error over a range of view orientations for small datasets and that

performance was invariant to large ranges of offsets and scales. However, for large datasets performance

was much lower and the training was much slower as the network had to cope with many more hidden

units. In this study, we address the issue of scaling up by reorganising our RBF networks into smaller

‘face recognition units’.

We are adopting the idea of ‘face units’ for recognising familiar faces from the work of (Bruce &

Young, 1986; Bruce, 1988) as they seem a useful way of developing a modular, scaleable architecture.

The reorganisation is to allow fast small networks trained with examples of views of the person to be

recognised. These face units should give high performance and also alleviate the problem of adding new

data to an existing trained network. We are use the various views of the person to be recognised together

with selected confusable views of other people as the negative evidence for the network. Our face units

have just 2 outputs corresponding to ‘yes’ or ‘no’ decisions for the individual. This is in contrast with

(Edelman et al., 1992) who did not use such negative evidence in their study. The rest of the paper

outlines our approach and presents results to show that this





Full details of “face unit” networks and discard strategy are given in (Howell & Buxton, 1995b).

Type I and II Data Tests

With Type I (2 person) data, a conventionally-arranged RBF network achieved 100% generalisation with

10/10 training of the invariant data at all four resolutions, and for 6/14 training at 90�90 and 44�44. The

slight difference in performance between the resolutions led to the 21�21 data set being used for later

tests. The network attained a peak performance of 97% with 40/60 training with the offset variance data,

and 93% for the size variance data. This showed that the RBF network maintained its performance with

high variation in the image data.
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2 Outline of the work

The pipe route generation process is defined as a kind of optim
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Abstract The view that cognition must be representational is a consequence of the Carte-

sian assumption that the mental and the material are fundamentally opposed to each other.

If we take mind and body to form a unity, rather than a union, cognitive science becomes

quite different from what it is usually taken to be. Computational theory, linguistics, and

neuroscience are replaced as core cognitive sciences by phenomenology, artificial life, and

ethology.

1 Introduction

Cognitive science has been shaped by analytic philosophy and the computer metaphor, which has led

to the dominance of such themes and notions as rationality, language, representation, functionalism,

and computation. I would like to make a case for a cognitive science which lets itself be shaped by

a phenomenological philosophy and biology. Central notions then become: experience, embodiment,

ethology, evolution, and dynamics. And the artificial contributions are to be expected from ALife, not

from AI.

1.1 RepresentationalismisCartesian

Cartesianism starts by opposing the mind to the world, the su







3 Merleau-Ponty, Embodiment, and Experience

3.1 The Mind-Body Unity

There is no mind-body problem. Mind and body are not two mutually exclusive entities which have to be

brought together (Cartesianism), but are two aspects of a single unity. Nothing is either purely subjective

or purely objective, except as an ideal abstraction. The unity (not union) of body and mind implies the

presence of the mental in the bodily and that of the bodily in the mental. The mind is not an entity

somewhere in the body, but it is the body. Merleau-Ponty (Mallin, 1979) speaks of the “body-subject”,

a beingin-the-world which–“anonymously”, or pre-persona



picture of reality, every world is from a certain point of view. There is intersubjectivity, though, which is

based on an ability of taking up someone else’s situation.

3.3 TakingExperience Seriously

Embodiment is indeed taken seriously more and more these days, certainly within ALife. However,

it is not generally appreciated that the taking seriously of embodiment requires the taking seriously of

experience. The fact that mind and body are one does not only mean that we need to recognize the body



are not shut up within the boundaries of the skin. We are open to and even intertwined with the world,

which is why it can happen that an instrument (a hammer, or even a car) becomes a true extension of

the (phenomenal) body. The mechanisms of the mental are to be found not only inside the cognizer’s
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1 Introduction

The goal of this research is to establish a computational model of the creative process in arts in terms of

Engaged and Reflective states, in particular in the field of writing. The Engaged state can be described as

a state in which the artist is involved intensely in the production of material related to his/her task, e.g. to

build a piece of music, to write a story, etc. Such production of material is guided by tacit constraints

e.g., cultural background, or the use of a specific style or technique. Thus, although everybody can

experience such states, in the case of artists some of these tacit constraints are the result of years of

experience, the development of certain skills, and the training in specific areas which allow them to

produce works of art which are difficult to imagine being produced by the layman. The Reflective

state can be described as a state where the artist analyses, and/or evaluates his/her work; also the artist

deliberately explores and transforms a conceptual space (Boden, 1991). During this state, therefore,

artists are helped by explicit and tacit knowledge, such as music theory, writing techniques, etc. which

they have learned during their training and experience as artists.

2 Hypothesisand Research Questions



3 Antecedents



replace logical problem-solving as the glue of thought” (Ge



Copland, A. (1955). What to listen for in Music. New American Library, New York.

Gelernter, D. (1994). The Muse in the Machine. Fourth Estate, London.

Hartley, J., & Branthwaite, A. (1989). The psychologist as wordsmith: a questionnaire study of the

writing strategies of productive british psychologists. Higher Education, 18, 423–452.

Smith, F. (1982). Writing and the Writer. LEA Publisher, London.

Spender, S. (1946). The making of a poem. In Ghiselin (Ed.), The Creative Process. University of

California Press, Berkeley.

Wason, P. C. (1980). Specific thoughts on the writing process. In Gregg, L. E., & Steinberg, E. R. (Eds.),

Cognitive Processes in Writing. LEA Publishers.

Weisberg, R. W. (1992). Creativity: Beyond the myth of genius. W. H. Freeman and Company.

Wellek, R., & Warren, A. (1970). The Theory of Literature (3rd edition). Harvest, New York.

69



In: A. Jonathan Howell & Joseph A. Wood eds., 1995 The Eighth White House Papers: Grad-

uate Research in the Cognitive & Computing Sciences at Sussex. University of Sussex, School

of Cognitive & Computing Sciences, Brighton, UK. Research Paper CSRP 390.



the “best” node of all the nodes that could possibly have been relevant to the former node). This leads

to a generalisation about hypertexts and information retrieval systems: that in order to determine how

accessible a node or document should be, it is necessary to anticipate all the likely circumstances in

which a user will want to or need to access the node or document. As relevance is measured in terms

of a user’s information need, this means that the location of a node in a hypertext or the indexing of a



In a combined information retrieval and hypertext system, all of the documents should have an

information-content representation. However, it is not necessarily the case that all the documents will

be organised into a hypertext structure, or that there will be only one hypertext structure. In a massive

hypertext system, it is unlikely that an author will have all-encompassing knowledge of the collection of

documents, so that when the author creates a new node there is a guarantee that the node will be linked

to all other associated nodes and vice versa. What is more likely to happen is that the author will identify

the most appropriate place to locate the node, given the author’s knowledge of some local topological











Class No. correct Peaks used

h9618a & GH3 20/20 (100%) D H I

h9618a & Walker 22/23 (96%) D I L

h9618a & h7777 13/14 (93%) D G L

GH3 & Walker 18/21 (86%) H K

liver & tumours 41/45 (91%) B E J

liver & hepatomas 24/24 (100%) E A

brain & tumours 45/45 (100%) B C G

Table II: Classification results when highly correlated datapoint values (from the labelled peak regions)

were used in the discriminant program

Class No. correct

h9618a & GH3 19/20 (95%)

h9618a & Walker 21/23 (91%)

h9618a & h7777 13/14 (93%)

GH3 & Walker -



4 Discussion

In this study the raw data were interpreted statistically without making any prior judgements about the

data sets, with the exception of class origin. Only then were the results interpreted with biochemi-

cal knowledge. The results shown above, together with previous work , (Tate et al., 1994), (Howells,
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Figure 2: Mr Chips evolving.
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3. The effectiveness of this approach strengthens earlier proposals that evolvable hardware justifies

a radical re-thinking of the nature of electronic systems: many constraints on the dynamics and

physical organisation of the circuit can be stripped away, revealing the true power of the underlying

hardware.

4. The evolved controller exhibits a certain amount of tolerance to faults in the RAM chip. Part of this

arises from the dynamics of evolving populations under certain circumstances, and is the subject of

ongoing research. Evolved systems can be as much as 10% less sensitive to faults than equivalent

systems arrived at by non-evolutionary means.

Closing

This paper has aimed to give an easy overview of some of the ideas of evolvable hardware. However,

there are deep issues to be pondered and hard problems to be tackled at all stages of this research: it
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Abstract Showtree is provided by Poplog for displaying trees — but it has certain implicit

limitations. This paper proposes an alternative, Dotty, which is more general than Showtree

and permits interactive graphical manipulation via X-windows. Having shown that Dotty

has fewer limitations than Showtree we examine the practical problems of using Dotty from

Poplog.

1 Introduction

Mathematically a graph G(N ;E) is defined as a set of nodes (N ) and a set of edges (E) joining nodes

together. Nodes and edges may have additional properties, and such a graph is called a labeled (or

coloured) graph. It follows from this that a graph is just a set of relationships which may be manipulated

mathematically. However, graphs also tend to occur frequently in science. An example might have nodes



Figure 1: Showtree, sample tree
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A

B C D

E F G

Figure 2: Dotty, sample tree

A

B C D

EF G

Figure 3: Dotty, illegal tree

Figure 2 shows the same tree as Figure 1 in Dotty. Notice that adding the (dotted) edge AE, (see

Figure 3), results in a graph Dotty can still display, but it is no longer a tree and cannot be displayed by

Showtree.

Before discussing Dotty in more detail, it is worth pointing out that the limitations identified in

Showtree do not apply, since:-

� Dotty can produce output in PostScript1, which is easily displayed on many different devices, see

for example (Thomas, 1988);

� Dotty is programmable and can be made to respond to mouse clicks;

� Dotty is not limited to trees, as Figure 2 shows;

� An arbitrary graph cannot be represented on a piece of paper without line crossings. Dotty tries to

reduce line crossings.





3.1 Commands to Dotty



define showtree_to_dotty ( list ) -> name ;

;;; This procedure takes input in the form of

;;; showtree, and converts it to a series of

;;; output statements, that model the input to

;;; dotty. Preamble and postamble are ignored.

;;; list is the input list

;;; name is named head of the list

lvars list, name ;

;;; declare head and tail of list

;;; and loop iterator

lvars _hd, _tl, item ;

;;; if input is just an element, use this as the name

if atom ( list ) then

list -> name ;

else

;;; split the list into head and tail

dest ( list ) -> _tl -> _hd ;

;;; if head is an element, then

if atom ( _hd ) then

;;; name the head as given

_hd -> name ;

else

;;; generate a new node for the unnamed element

gensym ( "void" ) -> name ;

;;; and use the list as the list's tail

list -> _tl ;

endif ;

for item in _tl do

;;; find the name of the element, and print it

lvars name2 = showtree_to_dotty ( item ) ;

printf ( '%P -> %P\n', [% name, name2 %] ) ;

endfor ;

endif ;

enddefine ;

Figure 6: Basic Algoritm Showtree input to Dotty’s input
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