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Abstract

Preprocessing of face images was performed to mimic the e�ects of

receptive �eld functions found at various stages of the human vision sys-

tem. These were then used as input representations to Radial Basis Func-

tion (RBF) networks that learnt to classify and generalise over di�erent

views for a standard face recognition task. Two main organisations of

the RBF networks (standard and face unit) and two main types of pre-

processing (Di�erence of Gaussian �ltering and Gabor wavelet analysis)

were compared. Quantitative and qualitative di�erences in these schemes

are described and conclusions drawn about the best approach for our face

recognition problem using low resolution images.

1 Introduction

Face recognition has been the subject of a great deal of research in computer

vision and work on biologically-motivated approaches has begun to deliver real

solutions. One of the main problems is dimensionality reduction to remove

much of the redundant information in the original images. There are many

possibilities for e�ectively representing this data, including principal component

analysis, Gabor �lters and various isodensity map or feature extraction schemes.



generalise over a wide range of conditions to capture the essential similarities

of a given face. In this paper, we are concentrating on the issues of �nding an

e�ective input representation for our networks. In particular, we contrast the

use of Di�erence of Gaussian �ltering and Gabor wavelet analysis at a range

of scales. One way of thinking about these input representations and mapping

them onto our RBF networks is to use the analogy with visual neurons. The

receptive �eld of such a neuron is the area of the visual �eld (image) where the

stimulus can inuence its response. For the di�erent classes of these neurons,

a receptive �eld function f(x; y) can be de�ned. For example, retinal ganglion

cellas and lateral geniculate cells early in the visual processing have receptive

�elds which can be implemented as Di�erence of Gaussian �lters (Marr & Hil-

dreth 1980). Later, the receptive �elds of the simple cells in the primary visual

cortex are oriented and have characteristic spatial frequencies. Daugman (1988)

proposed that these could be modelled as complex 2-D Gabor �lters. Petkov et

al. (1993) successfully implemented a face recognition scheme based on Gabor

wavelet input representations to imitate the human vision system. The ques-

tion we want to ask here is whether these later stages of processing make more

information explicit than the earlier DoG �lters for our face recognition task.

2 The RBF Network Model

The RBF network is a



Grey- Fixed Fixed % with Epochs

Levels % 1.5 Discard

Full 88 95 1148381

Reduced 92 100 335524

(a)

Grey- Ave. Ave. % with Ave.

Levels % 1.5 Discard Epochs

Full 94
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Figure 1: Masks created from various DoG scales (with mask sizes): (a) 1.6

(15�15) (b) 1.2 (11�11) (c) 0.8 (7�7) (d) 0.4 (5�5) (e) 0.15 (3�3)

In summary, good generalisation performance was obtained, although the

training times were unacceptably long. The reduction of the range of grey-

levels gave very much shorter convergence times, though still very slow.

5 Di�erence of Gaussians (DoG) Pre-Processing

Where there is a change of intensity in an image, peaks or troughs are found in

the �rst derivative of the intensity, and zero-crossings in the second derivative.

To isolate the latter, Marr & Hildreth (1980) suggested the r
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G, or Laplacian

of the Gaussian, operator, which can be closely apprimated by a Di�erence of

Gaussians (DoG) operator, constructed from two Gaussians G of the form:
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where the space constants � have a ratio of 1:1.6. The DoG masks were con-

structed using the Popvision Convolve DoG 2D routines. Figure 5 shows

these masks at various scale values, whilst Figure 2 shows the result of their

convolution with an image at a �xed resolution.

5.1 DoG Gradients vs. `Zero-Crossings'

With a typical, grey level image, such as Figure 3(a), DoG convolution will give

continuously-valued

2

gradient information, as shown in Figure 3(b). Where

these values change from one sign to the other is the `zero-crossing' point; if

the values are thresholded at 0 into either 0 (for negative) and 1 (for positive),

the boundaries between black and white are the zero-crossings for the image,

as shown in Figure 3(c).



(a)
(b)

(c)
(d)

(e)

(f)

(g)

(h)

Figure 2: DoG scales applied to 25�25 image (with convolved image sizes): (a)

0.15 (23�23) (b) 0.4 (21�21) (c) 0.8 (19�19) (d) 1.0 (17�17) (e) 1.2 (15x15) (f)

1.4 (13x13) (g) 1.6 (11x11) (h) 1.9 (9x9)

(a)

(b) (c)

(d)

(e) (f)

Figure 3: E�ect of reducing range of grey-levels on 25�25 image (a) full range of

grey-levels (b) after non-thresholded DoG (c) after thresholded DoG (d) reduced

range of grey-levels (e) after non-thresholded DoG (f) after thresholded DoG
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Scale Thres- Grey- Fixed Fixed % with Epochs

holding Levels % 1.5 Discard

0.4 No Full 50 59 54515

0.4 No Reduced 68 86 35801

0.4 Yes Full 72 90 13311

0.4 Yes Reduced 86 100 27463

0.15, 0.4, 0.8, 1.6 Yes Reduced 78 90 19119

(a)

Scale Thres- Grey- Ave. Ave. % with Ave.

holding Levels % 1.5 Discard Epochs



50/50

50/50 (discard)

% Correct

DoG Scale75.00

80.00

85.00

90.00

95.00

100.00

0.20 0.40 0.60 0.80 1.00 1.20

(a)

50/50

Epochs x 103

DoG Scale

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0.20 0.40 0.60 0.80 1.00 1.20

(b)

Figure 4: E�ect of varying the scale in DoG pre-processing (a) on test general-

isation (b) on training epochs with 50/50 RBF networks
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(b)

Figure 5: E�ect of varying the scale in DOG pre-processing (a) on test general-

isation (b) on training epochs with 6+12 RBF `face unit' networks
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(a) (b) (c) (d) (e) (f)

Figure 6: 25�25 masks created from Gabor �lter of period 13: (a) 0

�

real (b)

0
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imaginary (c) 30

�

real (d) 30

�

imaginary (e) 45

�

real (f) 45

�

imaginary

(a) (b)
(c) (d)

(e) (f)

Figure 7:�0
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Scheme Orien- Scales Over- Matrix Coe�c-

tations lapping ients Per

(degrees) Image

A1 0 4 No Square 170

A2 0, 180 4 No Square 340

A3 0, 120, 240 4 No Square 510

A3X 60, 180, 300 4 No Square 510

A3S 30, 150, 270 4 No Square 510

A4 0, 90 4 No Square 680

180, 270

A6 30, 90, 150 4 No Square 1020

210, 270, 330

B3 0, 120, 240 4 Most Square 510

C3 0, 120, 240 4 Less Square 510

D3 0, 120, 240 3 No Circular 420

Table 3: Types of Gabor sampling schemes tested, with �lter orientations and

number of coe�cients sampled per image

6.2 Gabor Sampling Schemes

In order to reduce the number of coe�cients calculated for each image, sparse

sampling schemes were constructed, with a range of scales. The `A' square

matrix sampling scheme which had the least amount of overlap on sampling

points, proved to be the most successful arrangement. Others were tested which

used large amounts of overlap on the sampling receptive �elds, or circular sets

of sampling points; Table 3 summarises the di�erent sampling schemes used.

Tables 4(a) and (b) show the sampling arrangements for the `A' and `B' square

matrix sampling schemes, with Figures 8(a) and (b) showing how these masks

were positioned to cover the image area. Note that the `A' scheme only covers

24�24 at the 8�8 scale and the some overlap was needed to �t the 2�2 and 4�4

scales.

The `C' square matrix sampling scheme (Table 4(c) and Figure 8(c)) was

devised after the `B' scheme performed poorly. The scales used were intended

to retain �ne detail from the original image.

Table 4(d) and Figure 8(d) show similar details for the `D' circular matrix

sampling scheme. Note that due to the fairly coarse alignment to pixel bound-

aries in the low resolution 25�25 image area, some masks placements do not

coincide with the exact mathematical position.
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Scheme Coe�cients Fixed Fixed % with Epochs

per Image % 1.5 Discard

A3 510 92 95 35752

A3R 510 92 100 40016

Non-Thresholded A3 510 82 90 330035

A3 (Sine mask only) 255 86 95 30806

A3 (Cosine mask only) 255 46 72 5555197

B3 510 86 97 28832

C3 510 84 92 24122

D3 420 82 94 40532

Table 5:



Scheme Coe�cients Ave. Ave. % with Ave.

per Image % 1.5 Discard Epochs

A3 510 96 98 654

A3R 510 95 98 755

Non-Thresholded A3 510 91 95 8288

A3 (Sine mask only) 255 94 99 368

A3 (Cosine mask only) 255 83 88 18980

B3 510 88 100 698

C3 510 92 96 556

D3 420 89 93 881

Table 6: Gabor Preprocessing for 6+12 Face Unit RBF Network (all schemes

used full range of grey-levels except A3R)

Fixed

Fixed (discard)

Random Max

Random Min

% Correct

Orientations

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1.00 2.00 3.00 4.00 5.00 6.00

(a)

Fixed

Random Max

Random Min

Epochs x 103

Orientations

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

1.00 2.00 3.00 4.00 5.00 6.00

(b)

Figure 9: E�ect of varying the number of orientations in Gabor pre-processing

(a) on test generalisation (b) on training epochs for 50/50 RBF networks
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6+12

6+12 (discard)

% Correct

Orientations
91.00

92.00
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99.00

100.00

1.00 2.00 3.00 4.00 5.00 6.00

(a)

6+12

Epochs x 103

Orientations
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.00 2.00 3.00 4.00 5.00 6.00

(b)

Figure 10: E�ect of varying the number of orientations in Gabor pre-processing

(a) on test generalisation (b) on training epochs for 6+12 RBF `face unit' net-

works

(a) (b)

(c)

Figure 11: Angles used for three-orientation tests: (a) A3 (b) A3X (c) A3S
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6+12

6+12 (discard)

% Correct

Coefficients
55.00
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80.00
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90.00

95.00

100.00
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(a)

6+12

Epochs x 103

Coefficients
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0.00 100.00 200.00 300.00 400.00 500.00

(b)

Figure 12: E�ect of speci�c arrangements of scales in Gabor pre-processing (a)

on test generalisation (b) on training epochs for 6+12 RBF `face unit' networks,

with total number of coe�cients for the combination of scales
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di�erent scales and orientations to be closely tailored to the task at hand. The

DoG preprocessing, on the other hand, results in an image-like representation

with as many coee�cients as there are pixels. In our future work, we will extend

the face unit RBF scheme and look at the problem of tracking faces in image

sequences. We will also extend the Gabor preprocessing scheme to the space-

time case.
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