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Abstract

Genetic Algorithms (GAs) are increasingly used for such purposes as deriving programs [1] and

producing designs for robots [2]. According to the building-block hypothesis and schema analysis

of Holland [3] the GA is an e�cient search method. However, empirical work has shown that

in some cases the method is outperformed by simpler processes such as random-permutation hill

climbing [4] and [5]. The present paper reexamines Holland's framework (as formulated by Goldberg

[6]) and �nds that such in-practice failures are e�ectively predicted by the schema analysis. The

high e�ciency of the GA method is commonly attributed to its `implicit parallelism'. However,

this e�ciency is hard to realise because there is a deep contradiction between the building-block

hypothesis and the schema theorem.

1 Introduction: natural and simulated evolution

In natural evolution, populations of individuals compete to survive and reproduce. Relatively �t indi-

viduals survive longer and thus reproduce more. Over time, the �tter examples of random variations

accumulate and average �tness tends to increase. According to the Darwinian theory, this process

of natural selection is responsible for the development of all life forms on earth. Researchers hope

to harness its power for computational purposes by implementing simulations of the process. In these

simulations, the individuals are candidate solutions to some problem and �tness is a measure of solution

quality. The aim is thus to `evolve' high-quality solutions through simulated natural selection.

A common way of pursuing this approach involves use of the crossover-based genetic algorithm or

C-GA [6]. In this approach, candidate solutions are represented as strings of characters or genotypes.

Reproduction involves the production of a new individual through the splicing together of genotypes

from two `parents'. Parent genotypes are split at a certain point, forming a left part and a right part.

The right part from one parent is then joined to left part from other, and vice versa. This produces

two o�spring genotypes which then replace relatively un�t individuals from the population.
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2 Schema analysis

At �rst sight, the C-GA appears to be a way of randomly exploring the space of possible genotypes.

However, Holland's schema analysis [3] provides an alternative picture. In this analysis we assume

that the GA is a way of processing genotype features rather then genotypes themselves | a feature

being simply a set of values in speci�c positions. A particular feature is de�ned in terms of a schema.

This is a genotype-like string with speci�c values in some positions and `don't care' values (asterisks)

in others. An example is

*10**0****



pure reproduction,



5 The shortness and low-epistasis assumptions

According to the schema theorem, schemas will only be processed correctly if they are of `short' de�ning

length. In fact a schema will only be processed correctly if its �tness advantage (the excess of its �tness

over the average �tness) is greater than its `vulnerability' | the ratio of its de�ning length to the

genotype length. How easily is this `shortness' assumption satis�ed?



independently attributable to individual parts of the genotype, but only to their interactions.

6 The building block hypothesis

The credibility of the C-GA does not rest solely on the schema theorem. It also rests on the so-called

building-block hypothesis. This states that the crossover GA works well when short, low-order,

highly �t schemas recombine to form even more highly �t, higher-order schemas. In fact, as Forrest

and Mitchell [4] note, `the ability to produce �tter and �tter partial solutions by combining blocks is

believed to be the primary source of the GA's search power.' Unfortunately, when we come to examine

the assumptions introduced by the building-block hypothesis, we �nd that they directly contradict

those introduced by the schema theorem.

The building-block hypothesis assumes that the �tness of any one block is typically a�ected by the

other blocks on the genotype. If this were not the case it would be meaningless to talk about a

`building-block process' operating over and above the usual evolutionary process. Thus the building-

block hypothesis implicitly assumes a situation of high epistasis and thus contradicts the low-epistasis

assumption introduced by the schema theorem.

When we come to consider the length implications of the building-block hypothesis we uncover a further

contradiction. During the building-block process, the schemas that require processing at any given stage

are actually the blocks that have been put together by the prior building-block process. Except at the



assumptions introduced by the schema theorem. The situation is illustrated schematically in Figure

1. Given the importance of the building-block hypothesis within the GA paradigm this clash of as-
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Figure 1: Inherent contradictions in the schema/building-block framework.

sumptions occurring at the most fundamental level of the analysis is of special interest. As Forrest and

Mitchell [4] have commented there is a `need for a deeper theory of how low-order building blocks are

discovered and combined into higher-order schemas.'

7 Summary

As Forrest and Mitchell have noted, con�dence in the e�cacy of the GA is still largely based on the

building-block hypothesis and the schema theorem. The schema theorem shows that schemas with

high �tness are given exponentially increasing numbers of trials through rep9.43s 1
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