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Abstract. We describe a comparison between Simulated Annealing

(SA), Dispatch Rules (DR), and a Coevolutionary Distributed Genetic

Algorithm (DGA) solving a random sample of integrated planning

and scheduling (IPS) problems. We found that for a wide range of

optimization criteria the DGA consistently outperformed SA and DR.

The DGA finds 8-9 unique high quality solutions per run, whereas

the other techniques find one. On average, each DGA solution is 10-

15% better than SA solutions and 30-35% better than DR solutions.

1. Introduction

This paper describes a comparison of SA, DR, and a Coevolutionary DGA

applied to a highly generalized class of job-shop scheduling problems.

These problems involve the simultaneous optimization of a number of

flexible manufacturing plans. The application of Coevolutionary GAs to

this class of problems has been inves



Section 2 explains IPS more fully, followed by an overview of each

technique used in this study. Problem, cost function and implementation

details are then given before the results of the comparison are presented.

2. Integrated Manufacturing Planning and Scheduling

The traditional academic view of job-shop scheduling (JSS) is shown in

Figure 1 [French S, 1982; Zweben M and Fox M, 1994]. A number of fixed

plans, one for each componen



In order to apply SA to a problem it is necessary to have a solution

representation and a set of operators to move from the current solution to

ne





Replacement is probabilistic using the inverse scheme to selection. Genetic

material remains spatially local and a robust and c



There were 24 available operation methods. The earliest availability date

for each machine was randomly generated from an appropriate range.

Release and due dates, set-up and machine times, were generated in

accordance with lookup tables and random functions [Palmer G, 1994].

Operation times were calculated using the company’s estimation program.

4.2 The Cost Function

In addition, machine utilization, U, for each machine can be calculated:

Where ai is the initial availabe date of machine i.

All of Palmer’s results reproduced here were found using the compound

cost function ‘mean flow,
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The provisional status of an operation placement is lost when the time in

the event-processing routines reaches the operation completion time. As

operations cannot be performed in part, ta



Further analysis indicated the

presence of a few aspects which

significantly swung the results

for the Total Tardiness criterion.

These occur in cases where a

problem includes a number of

plans generated from the same

templates-section. In such cases,

the due-dates turn out to be similar for a number of jobs which largely

demand the same machines (i.e. the method flexibility required to avoid

waiting-times turns out to be particularly limited). Because there are 14

job-types, and 5-10 different jobs per problem, the probability of getting

three or more jobs from the same job-type class is ≈0.071 (given 105 jobs,

an average of ≈7.5 jobs would be the same as at least two others). This

aspect adds to the difficulty of the problem by making the total tardiness

hard to minimize. Table 4 shows the results for two identical DGA runs,

differing only in the problems used: i.e. two different sets of 100 problems.

Algorithm Makespan Proportion

Tardy

Total

Tardiness

Total time

Machining

Machine

Utilization

Mean

Flowtime

GPDGA 1st 62.75 0.18 16.67 112.86 0.16 23.93

GPDGA 2nd 63.50 0.16 12.89 117.22 0.16 23.99

SA 89.09 0.18 8.87 191.22 0.18 36.10

K&C 95.96 0.31 30.28 218.13 0.19 41.37

Table 4: Comparison of Two sets of 100 Problems (GPDGA Cont. cost function)

The results stay reasonably constant except for tardiness factors. Thus the

effect of the MFTT2 in Table 5. This suggests that, although 100 problems

would provide statistical significance for most of the optimization criteria,

the sample may not be large enough to give a fair comparison of tardiness.

7. Conclusions

We found that for all the optimization criteria described in [Palmer G,

1994] the coevolutionary DGA consistently outperformed the SA algorithm

and the DR algorithm. Results suggest that variance in costs due to

sample size should be calculated in this sort of comparative study. It is

clear that some optimisation criteria are more sensitive to this effect than

others. A larger sample than that provided by Palmer would have been

desirable. Both DGA cost function configurations investigated improved on

the performance of the SA by a factor of over 15%, and on the dispatching

rule by more than 35%. The results

suggest that a cost function that

includes factors that are related to both

its individual performance as well as

it’s group performance will outperform,

Algorithm Mean Flow

time + Total

Tardiness * 2

Mean No.

Competing

Solutions

GPDGA Cont. 46.54 8.76

GPDGA Grp. 45.56 9.74

SA 53.84 N/A

DR 101.93 N/A

Table 3: MFTT2 Comparison

Algorithm MFTT2

GPDGA 1st 57.27

GPDGA 2nd 49.77

SA 53.84

K&C 101.93

Table 5: MFTT2



by about 1%, one which only accounts for the group performance. Unlike

the other techniques, the DGA produced a number of unique, high quality

solutions, to the problem on each run (typically 8 or 9).
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