
PreparingStudentsforSoftwareEngineering

SteveM .Easterbrook

TheodorosN .Arvanitis

CSR P N um ber413

M arch 18,1996

ISSN 1350–3162

CognitiveScience

R esearch Papers



Preparing Students for Software Engineering

Steve M. Easterbrook

Software Research Lab.

NASA/WVU IV&V Facility

Fairmont, WV 2655

Email: steve@atlantis.ivv.nasa.gov

Theodoros N. Arvanitis

School of Cognitive & Computing Sciences

University of Sussex, Falmer, Brighton, BN1 9QH, UK

Email: theoa@cogs.susx.ac.uk

March 18, 1996

Abstract

This position paper

1

describes our work with a new course at Sussex University,

designed to bridge the gap between computer science and software engineering. We

argue that the way in which software engineering is introduced in most computer

science degrees makes it hard for students to internalise the lessons of good engi-

neering practice. In particular, programming is seen to be divorced from software

engineering. We describe a new course taught24.7199 6he3654(et)999.9598ra0 T



1 Introduction

There is an important gap in the training of computing professionals, between

software engineering and the practical aspects of \computer science", particularly

programming. Programming is normally taught right at the start of a computer sci-

ence degree. A typical introductory programming course will introduce students to

a particular programming language, showing them how to construct algorithms to

solve simple problems, and how to convert those algorithms into programs, through

proper use of the constructs available in the chosen programming language. At some

subsequent point in their careers, these students will fets to





2.1





work. At the very least, this allows them to let o� steam when they get

frustrated with the practical work. More importantly, it provides a route into

discussion about process improvement. Whenever they criticize the course,

we try to respond positively to their criticism, but also ask them to come up

with coping strategies, so that if they can't change the nature of the course,

they can at



to have gained less from the course than the others, and we hope to prevent this

happening in future years.

Even with these problems, the course has been a great success in preparing

students for software engineering. It has given them a wide range of experiences,

from teamwork and technical presentation, through to an appreciation of how hard

it is to modify other people's undocumented code. Most importantly, it has given

them practice in the key software engineering skill of learning from failures. The

majority of the students enjoyed the course, and rated it highly in terms of relevance

to themselves. This �rst set of students are currently taking their second year

software engineering course. They are proving to be far more motivated to learn

about software engineering that any previous cohort of students.

At the current time, we have taught the course once, in Spring 1995, and are

running it again in Spring 1996. It is too early to tell whether we have achieved our

long term goal: we will not be able to determine whether the students who took

the course really have taken the lessons to heart, until we observe whether they

willingly adopt some of the techniques in their own software projects.

Acknowledgments

We would like to thank the students at Sussex University who took part in the course

in 1995, and provided many helpful comments on the course. Also, thanks are due

to Amer Al-Rawas and Joe Wood, who helped us to design and run the course.

References

[1] D. L. Parnas, \Education for Computing Professionals" IEEE Computer, Pp.

17-22, Jan 1990.

[2] J. J. Horning and D.B. Wortman,


