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Abstract

A novel neural model made up of two self-organizing map nets | one on

top of the other | is introduced and analysed experimentally. The model

makes an e�ective use of context information, and that enables it to per-

form sequence classi�cation and discrimination e�ciently. It was successfully

applied to a set of contrived sequences, and also to a real sequence | the

third voice of the sixteenth four-part fugue in G minor of the Well-Tempered

Clavier (vol. I) of J. S. Bach. The model has application in cognitive do-

mains which demand classifying either a set of sequences of vectors in time

or sub-sequences into a unique and large sequence of vectors in time.



1 Introduction

Several researchers have extended the self-organizing feature map model

(Kohonen, 1989) to classify sequential information. The problem involves

either classifying a set of sequences of vectors in time or recognizing

equences



in their model. In the following sections, we shall describe the model, and

present two experiments. In the �rst one, the model is applied to a small

scale problem in order to analyse its behaviour. In the second, it is applied

to a large scale real example.

2 The model
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where � 2 (0; 1) is the learning rate. �(i) is the neighbourhood interaction

function (Lo & Bavarian, 1991), a gaussian type function, and is given by
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where �
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are constants which confer the shape to the function.
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where (l
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) are the coordinates of the units i

0

and i

00

respectively

in the map.

The neighbourhood interaction function has proved to be useful, indeed.

It provokes two main e�ects.



by reducing the number of epochs required. Second, it improves the quality

of the map by





the radius in 1. The coarse-mapping phase took 20%, and the �ne-tuning

phase took 80% of the total number of epochs. The initial weights were

given randomly, in the range between 0 and 0.1, to all SOMs.

Di�erent decay rates were tried. In the bottom SOM of model II, they

ranged from 0.4 to 0.7, and in the top SOM, from 0.7 to 0.95. In the model

I, the decay rate ranged from 0.7 to 0.95. The input layer of the model I

and of the bottom SOM of model II held two units. Bits 0's of the sequences

were represented as (1,0), whereas bits 1's were represented as (0,1).

Model I was tested with three di�erent map sizes, 9�9, 15�15, and

21�21, trained in 400, 700, and 1000 epochs respectively. In model II, the

map sizes were set to 6�6 (trained in 250 epochs) and 9�9 (trained in 400

epochs) to the bottom and top SOM respectively. The transfer function �

was given by equation 7, with N

�

= fi

�

g.

The best results of models I and II are displayed in the tables 1 and 2

respectively. A sequence S

a

is said to have the same classi�cation as that of

the referential sequence S
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if the distance �(i

�
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.

Table 1: Results for model I (�rst experiment)

Map Size Decay Rate No. Miscl.

9�9 0.7

N

�



bits of a sequence because the contribution of these �rst bits to the classi�-

cation of the sequence is very low. For instance, let S

a

= 100000 and S

b

=

010000 be two sequences. Considering a decay rate of 0.8, the activations of

the two input units would be 3.362 and 0.328 after the entrance of the last

bit of S

a

. The activations would be 3.280 and 0.410 for S

b

. The di�erences

in the activations between S

a

and S

b

are not relevant, and probably the

sequences would be classi�ed as identical by model I.

The problem with model I is that the SOM sees just bits in its input. Yet,

its performance would be much improved if the input not only represented

bits, but also the context where they appeared. Di�erent input units would

then be activated depending upon the order that the bits were input. For

example, considering a representation that includes three bits at most, S

a

and S

b

would be represented by table 3. As the representation makes a

clear distinction between the beginnings of S

a

and S

b

, it helps model I to

distinguish between the two sequences as well.

Table 3: Context representation for two binary sequences

Seq. time: 1 time: 2 time: 3 time: 4 time: 5 time: 6

S

a

(1) (10) (100) (000) (000) (000)

S

b

(0) (01) (010) (100) (000) (000)

The idea of encoding context in the representation to distinguish vari-

ations in sequences is not original. Wickelphones (Wickelgren, 1969) and

Wickelfeatures (Rumelhart & McClelland, 1988) are examples of such a

representation. Model II also makes use of the representation, and that is

the reason why its performance is much superior than that of model I. The

top SOM of model II sees bits and over all, context in its input. As opposed

to Wickelphones and Wickelfeatures, the representations in the input layer

of the top SOM are not handmade beforehand, but instead, they are built

up by the bottom SOM. The advantage of this approach is twofold. First,

one does not need to worry about encoding context once the bottom SOM

is in charge of making an internal representation of context in its map. Sec-

ond, only the representations required by the application will be built up by

the bottom SOM reducing thus, the necessary number of units in the input

layer of the top SOM.

The size of context is the size of memory of past inputs, that means,
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the maximum number of past input bits that the bottom SOM may rec-

ognize. The size of context is directly dependent of the decay rat-341.039 13.6801 Td13.2 0 The
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Figure 2: Distances between the winning units of two binary sequences

4 Second experiment

The second experiment was on recognizing sub-sequences into a large and

unique input sequence. The input data consisted of a sequence of musical

intervals that corresponded to the third voice of the four-part fugue in G

minor of Bach (Bach, 1989). The theme of the fugue (�gure 4), a referential

sub-sequence, was divided into two parts | theme I and theme II. Several

perfect and modi�ed instances of theme I and II occur in the third voice of

the fugue.

The experiment pursued two aims. First, to verify whether models I

and II recognize all instances of theme I and II in the third voice of the

fugue. Second, to verify whether any other sub-sequence, which was not an

instance, was not misclassi�ed as theme I or II.

The training of the two SOMs of model II and the SOM of model I
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the top SOM, from 0.7 to 0.9. In model I, the decay rate ranged from 0.7

to 0.9. We present here only the results using decay rates of 0.5 and 0.85

respectively for the bottom and top SOM of model II, and 0.85 for the SOM

of model I.

The SOM of model I was tested with map size of 18�18, and was trained

in 850 epochs. In model II, the map sizes were set to 15�15 (trained in 700

epochs)





were also present in the theme.

5 Conclusion

A novel neural model made up of two self-organizing map networks | one

on top of the other | is presented. It has application in domains which de-

mand classifying either a set of sequences of vectors in time or sub-sequences

into a unique and large sequence of vectors in time. The model makes an

e�ective use of context information, and that enables it to perform sequence

classi�cation and discrimination e�ciently. Despite the good results, it is

still open to further research. In principle, the model could have any number

of self-organizing map nets | the more nets, the more similar and longer

the sequences of vectors in time which could be recognized.
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