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2 The Grammatical Inference Problem

The RAOC operator was originally developed as part of a novel approach to the prob-

lem of unsupervised learning of stochastic context-free grammars from corpora [5]. A

stochastic context-free grammar (SCFG) is a variant of ordinary context-free grammar in

which each grammar rule is associated with a probability, a real number in the range

[0,1]. The set of production probabilities are called the parameters of the SCFG. An

example of a simple SCFG is shown in �gure 1, with the probability associated with each

production given in parentheses. The SCFG generates the language fa

n

b

n

jn � 1g, where

the probability of generating the string ab is 0:6, the probability of generating aabb is

0:24, and so on.

S! A B (1:0)

A! a (0:6)

A! C S (0:4)

B! b (1:0)

C! a (1:0)

Figure 1: SCFG for the language a

n

b

n

(n � 1)

A corpus is a �nite set of strings, where each string is associated with an integer

representing its frequency of occurrence. An example of a corpus is shown in �gure 2.

Given a corpus as training data, the problem is to identify a SCFG that models the corpus

data as accurately as possible, while generalizing appropriately to the wider language from

which the sample strings are drawn.

ab 595

aabb 238

aaabbb 97

aaaabbbb 49

aaaaabbbbb 14

aaaaaabbbbbb 5

Figure 2: A corpus for the language a

n

b

n

Our approach employs a genetic algorithm to search for the most likely grammar for a

given corpus. Each genome encodes a complete set of parameters for a covering grammar

consisting of all possible Chomsky normal form rules over a �xed set of terminal and

nonterminal symbols. Since some of the parameters may be zero, a genome e�ectively

picks out a subset of the rules: just those rules with non-zero probability. The �tness

of the SCFG represented by a given genome is calculated by summing a measure of the

likelihood of the corpus given the grammar and a measure of grammar size favouring

smaller or simpler grammars over larger, more complex ones (see [5] for further details).
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Experiments were conducted using a number of di�erent crossover operators (de�ni-

tions are given in section 3). The results of these experiments were unequivocal: RAOC

consistently outperformed the other operators. Figure 3 shows a plot of maximum gram-

mar �tness against number of generations for each of the crossover operators tested on the

a

n

b

n

problem. Not only does RAOC �nd the best solution overall, it also seems to home

in on this solution very rapidly. Very similar outcomes were observed for a number of

other grammar induction problems and this motivated the more general study described

in the following sections.

Figure 3: Comparison of di�erent crossover operators on the a

n

b

n

problem

3 Crossover Operators

A crossover operator C takes two genomes p

1

and p

2

and produces two o�spring c

1

and

c

2

. Let p

ij

denote the j

th

bit of genome p

i

, and assume the length of a genome (in bits)

is chromlen. There are a variety of crossover operators that have been developed for

di�erent problems, the commonest of which are:

� One-point crossover (1PC ): Choose a random k such that 1 � k � chromlen.

De�ne c

1

and c

2

by:

c

1i

=

(

p

1i

1 � i < k

p

2i

otherwise

and

c

2i

=

(

p

2i

1 � i < k

p

1i

otherwise
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� Two-point crossover (2PC): Choose random j; k such that 1 � j � k � chromlen.

De�ne c

1

and c

2

by:

c

1i

=

8

>

<

>

:

p

1i

1 � i < j

p

1i

k < i � chromlen

p

2i

otherwise

and

c

2i

=

8

>

<

>

:

p

2i

1 � i < j

p

2i

k < i � chromlen

p

1i

otherwise

� �-crossover [8]: This is often referred to as parameterised uniform crossover [7] and

is really a family of operators, one for each � 2 [0; 1]. Let X

i

be 1 with probability

�, and 0 with probability (1� �). �-crossover can then be de�ned by:

c

1i

=

(

p

1i

if X

i

= 1

p

2i

otherwise

and

c

2i

=

(

p

2i

if X

i

= 1

p

1i

otherwise

Note that �-crossover is symmetrical in the sense that, for 0 � � <= 0:5, �-

crossover behaves in exactly the same way as (1 � �)-crossover with c

1

and c

2

interchanged. 0.5-crossover is usually called uniform crossover (UC ) [8], and is the

most commonly used of this family of operators.

In order to de�ne randomised and/or crossover, it is convenient to �rst de�ne:

� �-and/or crossover: Like �-crossover, this is a family of operators, one for each

� 2 [0; 1]. Let X

i

be 1 with probability �, and 0 with probability (1 � �), then

�-and/or crossover can then be de�ned by:

c

1i

=

(

p

1i

^ p

2i

if X

i

= 1

p

2i

_ p

2i

otherwise

and

c

2i

=

(

p

1i

_ p

2i

if X

i

= 1

p

1i

^ p

2i

otherwise

where ^ and _ are the Boolean operators and and or , respectively.

The e�ect of this operator is that with probability �, at each bit position the �rst

child gets the logical and of the corresponding bits of the parents, while the second gets

the logical or . Conversely, with probability (1 � �) the �rst child gets the logical or

and the second gets the logical and . Like �-crossover, this operator is also symmetrical

with respect to values of � above and below 0.5. We are now in a position to de�ne the

randomized operator:
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F4 This is a \noisy" function with random noise added
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Figure 4: Comparison of di�erent crossover operators on F8 (population size 256)

The performance of the di�erent operators was measured with respect to the following

criteria:

� Hit Rate (HR). This is the percentage of the 20 runs for a given combination of

problem, population size, and crossover operator, in which at least one individual

has a �tness of within 0.005 of the optimum value for that problem. In a sense this

measures how often a solution to a problem is found.

� Average Evaluations (AE). This is the average number of evaluations needed to

�rst obtain an individual satisfying the hit rate criterion. The average is only taken

over runs in which such an individual is found. This measures how fast a solution

is found, provided that one is found.

� Average of Best Values (AV). This is the average over the 20 runs of the �tness of

the best individual at the end of each run. This measures how well the system does

on the average.

7 Results

The results of the experiments described above bore out earlier observations. In

general, RAOC performed best (as measured by HR, AE and AV) on more of the test

problems than any of the other operators. This showed up more strongly as the population

size increased. Table 1 shows the results for a population size of 256. (In the table, bold

face type is used to indicate best performance.) At this population size, RAOC is the

clear winner on 17 out of the 22 problems. The increase in performance is often quite
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Size RUC 0:75-AOC RAOC

256 HR AE AV HR AE AV HR AE AV

P1 100 2053 1.0 100 879 1.0 100 650 1.0

P2 100 2436 1.0 100 1023 1.0 100 865 1.0

P3 80 2461
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