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Abstract

In constructive induction (CI), the learner's problem representation is

modi�ed as a normal part of the learning process. This is useful when the

initial representation is inadequate or inappropriate. In this paper, I argue

that the distinction between constructive and non-constructive methods is

unclear. I propose a theoretical model which allows (a) a clean distinction

to be made and (b) the process of CI to be properly motivated. I also show

that although constructive induction has been used almost exclusively in

the context of supervised learning, there is no reason why it cannot form

a part of an unsupervised regime.

1 Introduction

Constructive induction (CI) is of use when the initial representation for a prob-

lem obstructs the application of ordinary inductive methods [1]. Wnek and

Michalski [2] have divided constructive induction methods into several types

including hypothesis-driven (HCI) methods, data-driven (DCI) methods and

knowledge-driven (KCI) methods. Practical methods introduced in recent years

include FRINGE [3], AQ17-HCI [2] and CN2-MCI [4].

Almost all CI methods seek to transform the initial representation space

by introducing new features. However, in the literature, the term `feature' has

been used ambiguously. In most cases it has been used to denote any construct
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or mechanism which imposes a new partition(ing) on the representation space.

However, this usage cannot be taken too literally since all supervised learning

algorithms attempt to implement the target



the fourth column). Can we use observations on the other data to predict this

missing value? In other words, can we empirically induce the missing value?
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2 7 1 5 0 4

Table 1: Sample body of data.

If we �nd that every possible value of the relevant variable has an equal

observed probability then we clearly cannot make any prediction at all. If all

values do not have the same probability then we should predict the missing

value to be the one which has the highest observed probability. However, there

are several ways in which we can work out observed probabilities.

We can look at the unconditional probability of seeing a particular value v

of x

i

.

P (x

i

= v)

Unfortunately, this does not help since both possible values of x

4

turn out

to have the same observed probability. This is simply the chance value

P (x

i

= v) =

1

jV j

where V is the set of all possible values of x

i

. (In this case the chance value

is 0.5 since there are only two possible values.)

We can also look at the probability of seeing a particular value conditional

on explicit instantiations of the other values, i.e.,

P (x

i

= v

a

jx

j

= v

b

:::)

where v

a

and v

b

are possible values and `...' denotes the optional inclusion

of other instantiations. This is more rewarding since it turns out that
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P (x

4

= 5jx

5

= 0) = 1

which is the observation that we always see x

4

= 5 whenever we see x

5

= 0.

Finally, we can look at the probability of seeing a particular value conditional

on there being an implicit property among the instantiations of other variables:

P (x

i

= vjg(X) = v

g

)

Here X is the entire datum and v

g

is the value of a function g, which evalu-

ates the implicit property. Looking at this sort of probability might have been

rewarding if, for example, the missing value had been a value of x

2

, since it

turns out that

P (x

2

= 7jduplicatesin(X) = 0) = 1

where the duplicatesin function tests whether there are duplicated values in

the datum and the 0 value indicates a false result. (This probability is observed

because 7 appears as the value of x

2

whenever there are no duplicates among

the remaining values.)

Methods which attempt to discover and exploit such probabilities for induc-

tive purposes, without using any other source of information, are empirical

learning algorithms. There are a large number of these, see [24, 25, 26].

3 Statistical v. relational learning

The analysis of justi�cation sources allows us to divide methods of inductive

learning into two basic types. A method that attempts to exploit either of

the �rst two forms of probability confronts a tractable task. Only cases that

are explicitly observed in the data need to be taken into account. There are

a �nite



i.e., they tend to exploit probabilities of the �rst and second form, rather than

of the third form. [27]

Interestingly, we can deduce that the evaluation function used in the third

form must measure a relational property of its inputs. To understand why, we

need to think about the way in which the function di�erentiates di�erent types

of input. Let us say that the function produces a particular value whenever

the input variables have certain absolute values. In this case, the evaluation is

e�ectively a label for an explicit case. If all the values of the function are derived

this way, the conditional probability can be reduced to a set of probabilities of

the second form. If the probability is a valid example of the third form, the

evaluation function must therefore measure a non-absolute | i.e., relational |

property of its inputs.

Learning problems whose solutions involve exploiting probabilities of the

third form are thus relational. Problems which involve exploitation of proba-

bilities for explicit cases are statistical, since they simply involve the derivation

of frequency statistics over a �nite dataset. Learning methods can be classi�ed

the same way. Learning procedures which exploit probabilities of the �rst and

second form are statistical while ones which exploit probabilities of the third

form are relational.

4 Recursive relational exploitation is construc-

tive learning

It is important to note that relational learners are potentially recursive. The

identi�cation of any set of relational e�ects involves the application of evalu-

ations (functions) to the original data. This creates new values and thus new

data. These new data can themselves be processed for statistical and rela-

tional e�ects in a recursive manner. Thus the process of recursively exploiting

relational e�ects is manifestly a constructive process. Since the process of ex-

ploiting statistical e�ects is manifestly non-constructive | and since there are

no alternative methods of exploitation | it can be deduced that the process

of constructive induction is, precisely, the process of recursive exploitation of

relational e�ects. This provides an operational de�nition of the the distinction

between constructive and non-constructive methods. It also gives the former

type of process a clear motivation: constructive methods are necessitated just

in case the relevant problem is of the hard, relational type.

Equating `constructive induction' with recursive, relational learning is gen-

erally compatible with conventional interpretations of the meaning of the term.

In particular, it is compatible with the intuition that constructive induction

involves the creation of `non-local' partitions. Any feature/function which com-

putes a statistical property of its arguments will tend to de�ne a partitioning

involving contiguous regions of the original input space, whereas a feature which
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process of unsupervised constructive learning may have any useful application.
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