


1 Introduction

The arti�cial evolution of control architectures typically involves the constant and

repetitive testing of hundreds upon thousands of individuals as to their ability to be-

have in a certain way or perform a certain task. In the case of real robots this testing

procedure is far from a trivial matter and (with the exception of certain hybrid ap-

proaches (Thompson, 1995; Nol�, Floreano, Miglino, & Mondada, 1994a)) can be done

in only one of two ways: control architectures must either be evaluated on real robots

in the real world, or they must be evaluated in simulations of real robots in the real

world. Both of these approaches have their problems.
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This paper puts forwards such a theoretical and methodological basis, albeit at a

preliminary stage, and outlines some notable experimental successes using the tech-

niques proposed. Section 2 undertakes a conceptual analysis of how it is possible for

control architectures that have evolved in simulation to transfer into reality in the �rst

place. Two conditions are put forwards that must be true of evolved controllers if this

transference is to be successful. Section 3 outlines a methodology for building simula-

tions within which reliably �t control architectures are guaranteed to meet these two

conditions, and are therefore guaranteed to cross the reality gap. The idea of fast,

easy to build minimal simulations is also introduced in this section. Section 4 outlines

evolutionary experiments that involve a minimal simulation of a Khepera robot, and

section 5 outlines evolutionary experiments that involve a minimal simulation of the

Sussex university gantry robot. Finally section 6 o�ers some conclusions and thoughts

for the future.

2 How is crossing the reality gap possible in the �rst

place?

As has been demonstrated in several papers (Jakobi et al., 1995; Beer & Gallagher,

1992; Nol�, Miglino, & Parisi, 1994b) it is possible to evolve control architectures in

simulation for a real robot. However, the explanations o�ered by the authors of these

papers as to why behaviours successfully transfer to reality when evolved under certain

simulation conditions while not under others fall well short of the level of understanding

necessary for the development of a general simulation building methodology. The

consensus view seems to be that control architectures will successfully transfer if the

right amount of noise is included in a carefully constructed and empirically validated

simulation of the robot and its environment

2

. But there is no such thing as the perfect

simulation; some real-world features will be modelled at the expense of others. And

since my empirically validated simulationmight be your unrealistic toy-world we cannot

agree on what to put into the simulation and what to leave out of it without objective

criteria based on a sound theoretical understanding.

2.1 What counts as success?

If we are to come up with a general methodology for building simulations for evo-

lutionary robotics it is important to de�ne exactly what we mean when we say that

a behaviour has successfully transferred from simulation to reality. In Miglino et al.

(1995), the authors look at the �tnesses of control architectures in simulation and com-

pare them to the �tnesses of the control architectures in reality, but as we shall see

in section 3.4 this is not always possible and we shall not be using this criterion here.

In Jakobi et al. (1995), the authors use a more subjective approach to judge whether

control architectures behave qualitatively similar in reality to how they behave in sim-

ulation, but again, as we shall see, this is not always possible either. For the purposes

of this paper, a control architecture is said to have successfully crossed the reality gap

if it successfully displays the behaviour it was evolved to display when down-loaded
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Although the nature of the `right amount of noise', and indeed even what it means for a behaviour

to `successfully transfer from simulation to reality', varies markedly between papers on the topic
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modelling process for the time being), there will be no di�erences between simulation

and reality from the point of view of evolving robot controllers; we can therefore give

evolution a free rein, safe in our knowledge that whatever aspects of the simulation

evolving controllers come to depend upon, they will also be present in the real world.

In practice, however, no matter how comprehensive the model, there will always be

real world features that have been left out. Even with extensive and time-consuming

empirical validation, simulations built according to this approach can only hope to

capture a subset of the totality of possible robot-environment interactions. They should

therefore be thought of in the same way as the simulations discussed above.





3 A new methodology for building simulations

In the previous section, two properties were put forward that together are su�cient

for the successful transfer of robot controllers across the reality gap: they must be

base set exclusive, and they must be base set robust. In this section ways of forcing

the evolution of these two properties



not rely on how they arise within this interval (the implementation aspect), but only

on the fact that they do (the base set aspect).









Figure 3: The task in the real world.
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Figure 4: The task in simulation.

in the Evolutionary Robotics literature so far. The behaviour that was decided on

is shown diagrammatically in �gure 3. As a Khepera robot begins to negotiate a T-

maze, it passes through a beam of light shining from one of the two sides, chosen at

random. To score maximum�tness points the control architecture must `remember' on

which side of the corridor the light went on and, on reaching the junction, turn down

the corresponding arm of the T-maze. This behaviour involves several elements: not

only must controllers guide the robot down the corridors without touching the sides

and negotiate the junction at the end of the �rst corridor (simple reactive behaviours

both), but they must also involve some internal state that allows them to `remember'

which side the lamp was on so that they can take the correct turning at the junction.

4.2 The minimal simulation

The minimal simulation used in the experiments was designed with low computational

overheads �rmly in mind. To give some idea of its simplicity, it contains two look-up-

tables, one containing 72 values and one containing 80, and about 300 lines of com-

mented C code that employ nothing more mathematically complicated than oating

point arithmetic. In fact, it does not model a T-maze at all - or rather it does not model

all aspects of a T-maze - but only a su�ciently large base set of robot-environment

interactions for the evolution of successful behaviours. This particular minimal base set

was chosen because its members are easy to model; the robot-environment interactions

in question are the same whether the robot is in a T-maze or in a simple, continuous,

straight corridor, and as we shall see this allowed considerable simpli�cation of the

simulation. The base set consisted of the following interactions:
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At �rst glance number 2 of the above list seems totally counterintuitive since a T-

maze has nothing to do with in�nite corridors. However, with respect to the infra-red

sensors of a Khepera which have a maximum range of only about 8cm, a T-maze is

identical to an in�nite corridor almost everywhere. Where a T-maze di�ers from a

corridor, at the T-junction, the interactions between the sensors and the corridor walls

were treated as implementation aspects of the simulation, and randomly varied from

trial to trial according to the methodology laid out above. In this way, reliably �t

controllers were forced to use strategies that depended on the interactions between the

infra-red sensors and the sections of the walls of the T-maze that could be regarded

as straight and continuous corridor walls, and those interactions alone. First we will

describe the way in which the simulationof a T-maze was constructed from two di�erent

phases of a simple continuous corridor model, and then we will describe how the corridor

model itself was put together.

Simulating a T-maze with two corridors

Figure 4 shows the two phases of the T-maze simulation. In the �rst phase, the virtual

robot had to travel down a simple corridor where it received a light signal from either

one side or the other. After it had travelled a predetermined distance, it was suddenly

popped out of the �rst corridor, rotated through ninety degrees, and popped into the

middle of a second corridor for phase two. It then had to chose whether to turn left

or right, depending on which
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Figure 5: A look up table contains the

perpendicular distances to the walls of a

20cm wide corridor for all eight sensors in

ten possible orientations.
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Figure 6: A look up table holds horizontal

and vertical increment values for 36 dif-

ferent orientation values and an average

speed of 1.

implementation aspects concerned with the di�erences between the simulation and

reality around the area of the T-junction, there were also several others:

� The side of the corridor that the light signal came from.

� The width of the two corridors: between 13cm and 23cm.

� The exact starting orientation of the robot: between �22:5 degrees of facing

straight down the corridor.

� The length of the illuminated section of the corridor: between 2cm and 12cm.

� The total length of the corridor in phase 1: between 40cm and 60cm

These were attributes of the simulation that it was necessary to give values to in

order that the simulation was a consistent whole, but that we did not want evolving

behaviours to be able to rely upon. Random values, from within the ranges shown,

were assigned to each implementation aspect at the start of each trial. Reliably �t

controllers were therefore forced to be independent of exactly where each value fell

within the relevant range, and were thus base set exclusive.

Simulating an in�nite corridor

A simple model of a Khepera's robot-environment interactions within an in�nite cor-

ridor was responsible for generating the base set aspects of the simulation. At each

iteration two main functions were called: one that updated the virtual Khepera's po-

sition, and one that calculated the values returned by the infra-red sensors. The third

robot-environment interaction listed above, namely the way in which the ambient light

sensors react to bright verse ambient light levels, was actually handled by a single

line of code. We will look at the way all three robot-environment interactions were

computed in turn.
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The simulation was updated the equivalent of ten times a second. Figure 6 shows

how the new position of the virtual Khepera within its environment was calculated at

each iteration. The orientation was used as an index to a look-up-table with 36 pairs

of values: horizontal and vertical increments for a Khepera travelling at a speed of 1cm

per second. To work out its new position, the values returned from this look up table

were multiplied by the average wheel speed in cm per second. The speed of each wheel

was calculated directly from multiplying the motor signals by the constant 0.8 cm per

motor unit per second. The change in orientation at each iteration was equal to the

di�erence between the distances the two wheels moved divided by the radius of the

robot (about 5.2cm). There was no allowance for momentum and the noise inherent in



10cm. For example, if the distance from the robot to a wall was actually 5cm instead

of 10cm, then look-up-table values for sensors that pointed at that wall were halved.

In this way, the 80 values of the look-up-table were su�cient to �nd the approximate

distance, warped according to the equation given above, from the centre of the robot in

any position and any orientation, along the line of any sensor, to the wall of an in�nite

corridor of any width.

Having ascertained warped distance values wdv for each sensor, the actual value

that each simulated sensor returned, V , was given by a simple linear function:

V =

8

<

:

0 wdv > a

1024� (7�wdv)=2 a > wdv > b

1024 b > wdv

(1)

where a and b were the maximum and minimum extent, respectively, of the linear

part of the response function. This meant that a sensor would saturate at maximum

value if its warped distance value was less than b (typically about 5), would return zero

if its warped distance value was greater than a (typically about 9), and would respond

linearly in between.

A simple random number generator was used to generate uniformly distributed

random deviates in the range �50. These were added to returned sensor values at each

iteration. In addition, the lowest value an infra-red sensor could return was a random

background value between 0 and 20. These noise levels roughly approximate the levels

observed in the real world, and as such were as much a part of the robot-environment

interaction model as any other aspect.

The way in which ambient light sensors respond to bright versus ambient light levels

was modelled by a single line of code. When the robot entered a particular section of

the corridor in phase 1 (that was randomly prede�ned in terms of length and position

relative to the starting point), the values returned by the ambient light sensors on one

side of the robot dropped from their normal background value of around 450 to a value

of around 100, as if they had been illuminated by a bright light. When the robot left







of ten �tness trials, each lasting the equivalent of �fteen seconds. At the end of each

trial, the �tness value was equal to the total distance travelled through the corridor

system plus a bonus of 100 if the virtual robot went the right way at the T-junction.

Thus if the virtual robot travelled a distance d

1

in the �rst corridor, and a distance d

2

at the second corridor, then the �tness score T for that particular trial was calculated

by:

T =

�

d

1

+ d

2

+ 100 right way at lights

d

1

+ d

2

wrong way at lights

The genetic algorithm was a steady-state distributed genetic algorithm (Collins &

Je�erson, 1991) with a population of 100 individuals arranged on a virtual 10 by 10

grid. At each iteration, a random location was chosen on the grid and a breeding pool

constructed from the nine individuals of the 3 by 3 square centred on that location.

Two probabilistically �t parents were chosen from this breeding pool according to a

linear rank-based selection procedure, and an o�spring constructed by a process of

crossover and mutation. This o�spring then replaced a probabilistically un�t member

of the same breeding pool according to an inverse linear rank-based selection procedure.

Single point crossover was applied with probability 0.7 and the expected number of

mutations per genotype, according to a Poisson distribution, was 2. At each o�spring

event, not only was the o�spring's �tness evaluated, but both parents were reevaluated

as well.

4.4 Experimental results

Figure 7 shows a typical example of the sort of neural network that consistently evolved

within around 1000 generations (where a generation was taken to be 100 o�spring

events). This is the simulated equivalent of 300 � 15� 10 � 100 = 45000000 seconds

or over 17 months of continuous real-world evolution, and takes around 4 hours to run

as a single user on a SPARC Ultra. The network reliably achieved near-optimal �tness

within the simulation. In order to see whether it would successfully transfer across the

reality gap, the network was



Figure 8: These six pictures together show the paths taken by a Khepera robot in

sixty consecutive trials of the control architecture shown in �gure 7. These sixty trials

were performed in consecutive batches of ten, and each picture shows ten trials for

a particular corridor width and torch orientation. The pictures were created using

an overhead camera, a videodisc, and simple computer vision techniques to �nd the

position of the robot in each frame.
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Figure 11: A diagrammatic view of the gantry arena from above showing the four

possible starting positions of the gantry robot. The dashed line in front of the triangle

marks the area that the gantry must reach in order for a trial to count as a success for

testing purposes.

5.1 The aim
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Figure 12: A typical image returned by the camera of the gantry robot. The robot

is facing the corner of the arena and the triangle can be seen on the left. The white



to a simulation, since the average value of each circular visual �eld in Harvey et al.

(1994) was just the average value of 25 randomly sampled pixels from within the �eld.

A simulation of either, therefore, must contain a model of how speci�c pixels of the

camera image acquire values in response to the orientation and position of the robot

within its environment.

Under the `disco lights' suspended above the gantry, the values returned by pixels

of the camera-image vary widely both with respect to time, and with respect to the

direction of the camera. Even if we know the exact location within the arena that a

particular pixel projects onto, there is not that much we can say about exactly what

the value of that pixel will be. However, there are a few general things that hold true

except in exceptional circumstances: if a pixel projects onto a wall but not onto a

shape then it will return a value within the range 0 to 13, if a pixel projects onto either

the triangle or the square then it will return a value between 14 and 15, and if a pixel

projects onto either the oor or the ceiling of the arena it will return a value between

0 and 15. Since these facts about pixel values within the `disco light' environment are

almost always the case, and since they are enough to distinguish the white triangle and

square from the black walls of the arena (for those pixels that project onto a wall of

the arena), they are all we needed to model.

In fact, the only visual aspect that it was essential to include in the model in order

that evolving control architectures were able to perform the shape discrimination task,

was the way in which pixels that project onto the walls of the arena acquire grey-scale

values in response to the orientation and position of the robot. If a pixel projects

onto the oor or ceiling, the value it returns will be nothing to do with squares or

triangles, there is no point in allowing evolving control architectures to rely on it. This

is especially true when one considers the extra modelling required. For example, if the

strategy employed by a control architecture that is reliably �t within the simulation

depends upon a pixel that projects onto the oor, then the simulated value of that pixel

would have to be reasonably true to life, or the control architecture would fail when

downloaded into reality: it would have evolved to rely on something that was true of the

simulation but not true of the real world. For this reason the values returned by pixels

that projected onto the oor or ceiling of the arena were treated as implementation

aspects of the simulation.

The base set of robot-environment interactions upon which the simulation was

founded, therefore, had just two members:

1. The way in which pixels of the camera image, that project onto the walls of the

arena, return grey-scale values within certain intervals: 14 to 15 for pixels that

project onto either the triangle or the square, and 0 to 13 for pixels that project



motor unit per second. In addition there was also a momentum term, m, such that at

each iteration, the increment �v to each wheel speed v in terms of the required wheel

speed u was:

�v =

u� v

m

(3)

This momentum term was added for the simple reason that in the case of the gantry,
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Figure 13: The left-hand picture shows the gantry arena as seen from above; if the

horizontal angle at which a pixel projects from the mirror onto the back wall is �, then

Px = x +

100�y

tan�

and d =

100�y

sin�

. The right-hand picture shows a cross-section of the

gantry arena; if the vertical angle at which a pixel projects from the mirror onto a wall

is  , then Py = d� tan + 19:5.

either the ceiling or the oor. If Pz was between 0cm and 22.5cm it was judged to

have projected onto a wall. If the wall in question was the one with the triangle and

the square on it, then simple geometric relationships between the coordinates of the

pixel projection point and the vertices of the two shapes were used to �nd if the pixel

projection point lay inside either of the shapes. At every iteration, a random deviate

in the range �1:



that if the robot proceeded in a straight line, or remained still, then pixel vales

remained steady. If the robot turned, then pixel values could change. Angular

distances between changes in value for any particular pixel averaged 25

o

and were

uniformly distributed between 0

o

and 50

o

.

3.



� The momentum term, m, of equation 5.2 was randomly set at the beginning of

each trial to a value between 1 and 4.

� Random o�sets of between �0:5cm per second were generated at the beginning

of each trial, and added to required wheel-speeds during position update calcu-

lations.

Together these random variations ensured that reliably �t control architectures were

able to cope with a wide variety of slightly di�erent robot-environment interaction

models. Included in this range were models that involved misshapen and mal-aligned

mirrors as well as noisy and unpredictable motors - such as the model instantiated by

the real gantry robot.

5.3 The evolutionary machinery

Evolving control architectures that visually discriminate between triangles and squares

in a noisy real-world environment is a non-trivial task independent of which currently

available evolutionary techniques are employed. Evolving such behaviours using the

simulation described above, furthermore, was even harder, since in order to be reliably

�t, controllers had to evolve to cope with a whole variety of slightly di�erent base

set aspects of the simulation, rather than just the one base set of robot-environment

interactions present in the real-world situation. This is why, although the evolutionary

machinery used in Harvey et al. (1994) (control architectures, genetic algorithm, �tness

function and so on) was initially reimplemented for the experiments described here in

order to provide a direct comparison, it was later abandoned; reliably �t individuals

failed to evolve run after run, and the implication was that the control architectures

used in the original experiments were just not capable of displaying the level of robust-

ness necessary to cope with the uncertainty inherent in the simulation.

Figure 14 shows a typical example of the type of control architecture used in the

experiments reported here. Functionally they are very similar to those used in the

Khepera experiments described in section 4: weights on links are in the range �2 and

thresholds are in the range 0 to 1. The activation function of every unit including

the motor neurons was that of equation 4.3. In addition to a genetically determined

number (with a maximum of 3) of connections to each neuron from other neurons in

the network, neurons could also receive normalized input, in the range 0 to 1, from a

camera image pixel. Motor signals were calculated from the output values of the four

larger corner neurons of �gure 14 according to the relation signal = 2 � (A

1

� A

2

),

where A

1

and A

2

are the output values of the appropriate forwards and backwards

neurons. The whole network including inputs and outputs, and therefore the whole

simulation, was updated at a speed of 10 times per simulated second.

The encoding scheme was chosen to allow genotypes to grow under genetic control

with a minimum amount of phenotypic disruption, thus allowing arbitrary levels of

complexity to evolve according to SAGA-like principles (Harvey, 1992).

Development took place in a two dimensional space, with the position of each neuron

(apart from the four motor neurons, see �gure 14) genetically determined within that

space. Each link within the network to any particular neuron was genetically speci�ed

in terms of the desired position of the neuron from which the link originated. The

nearest neuron to this desired position, within a certain radius, was then alloted as the

originator of the link. If no neurons lay within this radius, which was set at around
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Figure 14: An example of a typical neural network evolved for the triangle/square

discrimination task. Ontherypical



every member of a population of 100 individuals, the �ttest 25 were used to produce

the next generation by randomly picking parents and producing o�spring until the new

population was full. Crossover was applied with a frequency of 0.7 and the expected

number of mutations per genotype, according to a Poisson distribution, was 1. There

was a probability of 0.02 at each o�spring event that a random gene would be introduced

into the o�spring genotype, as well as a probability of 0.02 that an already existing

gene would be deleted.

The �tness function returned the average value scored by an individual in a total of

eight �tness trials, each trial lasting a maximum of twenty simulated seconds. For the

�rst set of four trials, the triangle was on the left and the square was on the right, and

for the second set of four trials, the triangle was on the right and the square was on

the left. For both sets, the robot was started at each one of the four starting positions

shown in Figure 11 in turn. At the end of each trial, when either the time had run out

or the robot had hit a wall, the �tness function returned 100� d as the �tness score,

where d was the distance from the centre of the robot to the centre of the triangle.

5.4 Experimental results

Figure 14 shows a typical example of the sort of network that evolves to be reliably �t



circumstances. This may have been due to freak noise, but may also have been due to

a mechanical or software error.

With



the solution to a complex maze, with many hundreds of junctions, in morse code.

This would be an extremely complicated behaviour by today's standards of what can

and cannot be evolved, and yet the minimal simulation remains simple and fast. It is

therefore possible to build minimal simulations for the evolution of complex behaviours.

Secondly, we need only look at the experiments of section 5 to realise that it is possible

to create minimal simulations for complex robots, or at least robots which employ

complex sensory modalities such as vision. The radical envelope of noise hypothesis

has yet to be tested on robots with complex motor modalities, such as insect robots.
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