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Summary

How does the visual system develop before the onset of visually-driven activity? By the time
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Chapter 1

Introduction

1.1 The problem of visual system development

How do mammalian visual pathways develop in the absence of patterned vision? By the time cats
are born, the retinogeniculate pathway, the pathway between the retina and the lateral geniculate
nucleus (LGN), has already developed into a near adult form. It is possible that each retinal
cell is told exactly which LGN cells it should connect to by some genetic plan (for example,
the chemospecificity hypothesis (Sperry, 1963)). However, given the large number of retinal and
geniculate cells, it is more likely that some other more general guiding principles are at work
(von der Malsburg & Singer, 1988). One such principle is that neural activity generated by visual
stimulation drives development (Blakemore & Cooper, 1970; Hirsch & Spinelli, 1970). At this
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layers:

1. Retinotopic mappings — neighbouring retinal cells tend to connect to neighbouring genic-
ulate cells. Initially this mapping is quite coarse, and refines during development.

2. Ocular segregation — LGN cells initially receive inputs from both eyes before becoming
selective to only one eye. Cells responding to the same eye are grouped into eye-specific
layers within the LGN.

1.2 Why consider the retinogeniculate pathway?

There are many visual pathways in the mammalian brain. There are several reasons why this thesis
focuses on just the retinogeniculate pathway:

o Although the retinogeniculate pathway is one of the simplest visual pathways, it is highly
likely that there are general principles of development at work. By studying these principles
in a simple pathway, it is hoped that they might be applicable to other more complicated
pathways. For example, it is suggested that the retinal waves of activity generate action
potentials in LGN cells which could in turn drive geniculocortical development (Penn, Gal-
lego, Mooney, & Shatz, 1995).
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1.3.1 Testing hypotheses
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1.4 Aims of the thesis

This thesis aims to cover the following issues:

o How can topography and ocular segregation develop in the LGN? Can it develop by way of
just the one mechanism, in the same way as was shown for ocular dominance and topogra-
phy in the cortex (Goodhill, 1992)?

o How are retinotopic maps affected by the dimensionality of the output structure? Most
models only consider a two-dimensional output structure, whereas this thesis is concerned
with the three-dimensional structure of the LGN.

o What are the within-eye and between-eye correlations that the model requires for develop-
ment and are they similar to the correlations that exist in the developing retina?

¢ Can the segregation of on- and off-centre cells be explained by the same mechanisms as
those needed for topography and ocular segregation, assuming certain correlations between
on- and off-centre cells?

1.5 Outline of the thesis

Chapter 2 provides a review of the relevant biological literature for this thesis. It contains a brief
introduction to the early stages of the mammalian visual pathway, concentrating on the properties
of cells in the retina and the LGN. The factors influencing neural development of visual pathways,
especially the retinogeniculate pathway, are discussed. The chapter concludes by introducing the
central hypothesis of the thesis: spontaneous retinal waves drive development of the retinogenic-
ulate pathway.

Chapter 3 reviews the previous computer models of retinotopic map formation and ocular
dominance. Although there are many models which superficially seem quite different, they share
many common mechanisms. Despite the large number of previous models, only one model has
explicitly examined the role of spontaneous activity in retinogeniculate development (Keesing
et al., 1992). A crucial feature missing from all models however is the lack of information on
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specific waves can cause postsynaptic units to become responsive to either on- or off-centre presy-
naptic units, but the input correlations required by the model are at odds with the current biological
data.

Chapter 6 investigates the forms of ocular dominance patterns that can be produced by cortical
models. Most cortical models generate ocular dominance stripes similar to those found in area
17 of the cortex, but can these models also be applied to the pa



Chapter 2

Development of the retinogeniculate pathway

This chapter summarises the relevant biological data about the development of the retinogeniculate
pathway. It is composed of two main sections. The first section introduces the retinogeniculate
pathway, describing its main components and how they function. Since cross-species comparisons
are difficult, most of the data is taken either from the cat or f
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ing. For example, around 10% of cells in area IT of the monkey respond maximally to images
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receive antagonistic input from horizontal cells, which normally receive synapses from photore-
ceptors over a wider area.

This combination of direct input from a narrow range of photoreceptors and antagonistic in-
direct input from a wider range of photoreceptors produces a centre-surround type receptive field
profile for the bipolar cells. A bipolar cell with inhibitory input from central photoreceptors is
called an on-centre cell since it depolarises in response to stimulation of the central photorecep-
tors and hyperpolarises in response to stimulation of more p
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for causing the temporal retinal axons to stay on the same side of the brain, whereas the nasal
retinal axons cross over to the other side (Wingate & Thompson, 1995).) The axons leave the
optic chiasm to form an optic tract on each side of the brain to innervate the appropriate LGN. In
this way, each LGN receives inputs from areas of the two retinae which correspond to the same
part of the visual field.

For most animals, the size of the inputs to the LGN from the two retinae are different: the
contralateral retinal input (that coming from the retina on the opposite side of the brain to the
LGN) is larger than the ipsilateral (same side) input. The di
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Y-like, depending on whether they show a null-response to sinusoidal gratings, as an analogue of
the retinal X and Y classes (Bowling & Wieniawa-Nakiewicz, 1986).

2.3.2 Receptive fields of LGN relay cells

The spatial receptive field profiles of relay cells are similar to RGCs, although the inhibitory
surround region tends to be stronger (Hubel & Wiesel, 1961), probably due to the effect of the
inhibitory geniculate interneurons. This similarity of receptive fields is due to the low convergence
of RGCs onto relay cells: typically a geniculate cell receives its inputs from between 1-5 retinal
cells which tend to be from the same eye and of the same polarity (on- or off-centre) (Mastronarde,
1987a).

This similarity of retinal and geniculate spatial receptive fields has led to the notion of the
geniculate as a “relay station”, transferring retinal information without significant processing to
the cortex. For example, geniculate cells show a slight orientation selectivity, but this property
originates in the retina, and is formed by the oriented dendritic fields of retinal cells rather than
being generated in the retinogeniculate pathway (Levick & Thibos, 1982; Leventhal & Schall,
1983). Similarly, the direction-selectivity found in some geniculate cells (Thompson, Zhou, &
Leventhal, 1994) is most likely a reflection of the sensitivity of their retinal inputs (Shou, Leven-
thal, Thompson, & Zhou, 1995).

In the temporal domain however, geniculate cell responses differ quite strongly from retinal
cells. Around two-thirds of geniculate cells exhibit a lagged response to retinal stimuli (Mas-
tronarde, 1987a, 1987b). This temporal distinction has led to geniculate cells being further cat-
egorised as either lagged or non-lagged (Humphrey & Weller, 1988). Although the function of
this lagged response is not clear, it could be used to generate various cortical responses such as
direction selectivity (Saul & Humphrey, 1990).

Finally, X and Y relay cells can fire in one of two modes: tonic or bursting (Guido, Lu,
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Lin, 1979). However, the projection of retinal space into the geniculate is not just a conventional
topographic mapping. Most maps project an input space into an output space of either the same or
lower dimensionality. In the LGN however, the dimensionality of the spaces is reversed: although
the retina is regarded as a two-dimensional sheet of cells, the LGN is a three-dimensional block
of cells. The mapping is organised such that a point of visual space in the retina projects to a
column of cells within the LGN. This group of LGN cells is termed a ‘projection column’, which
is normally defined as a column of LGN cells which contains 90% of all cells with receptive fields
(RFs) responding to the same region of visual space (Sanderson, 1971b). Typically, these columns
are oriented perpendicular to the LGN layers.

Although cells within a projection column receive input from the same region of visual space,
they can respond in different ways to the same stimulus. For example, X relay cells at different
depths within a column respond to the same stimuli with different timing latencies. These laten-
cies could be useful for creating certain selectivities of cortical cells, such as direction selectivity
(Bowling, 1989a).

The mapping of retinal space into the cat LGN is shown in Figure 2.3. The layout of retinal
space in the ferret follows similar retinotopic principles, although the ferret LGN is positioned
differently (Zahs & Stryker, 1985). Just as the retina has more cells representing the central visual
field, so does the LGN, as can be seen from the amount of geniculate covering the central £2°
in comparison with the amount covering 10-20°. However, equal numbers of RGCs project to
equal volumes in the LGN, and so the gradient of visual field representation in the geniculate is a
reflection of RGC density gradient (Sanderson, 1971b).

Parasagittal section: lines of isoelevation
Coronal section: lines of isoazimuth

Dorsal +45°
0° 1° 9o °Dorsal

Anterior

-20° Lateral

-50°

Ventral

Figure 2.3: The topography and layering of the cat LGN — parasaggital and coronal views.
Parasagittal view adapted from Figure 9 of (Sanderson, 1971a). Coronal view adapted from Fig-
ure 14 of (Sanderson, 1971a). The C layers have been omitted here for clarity, but lie just below
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2.4.2 Other theories of LGN function

The main theories regarding the role of the LGN in visual processing are dominated by the exis-
tence of the corticogeniculate pathway and have been outlined above. In this section we briefly
consider some of the other theories.

One role of the LGN may be to organise the retinal inputs in a way that can help cortical
processing by grouping together certain cells so that they are close together. For example, the
segregation of inputs in the LGN is maintained in the projection to the cortex. In the cat, central
regions of the A laminae project to layer IVb of cortical area 17, whereas border regions project
to layer 1Va (Bowling, 1989b).

Alternatively, since there are around four times as many geniculate relay cells than RGCs
(Sanderson, 1971b), there is considerable divergence in the retinogeniculate pathway. This diver-
gence could give the cortex a fairer representation of the X and Y cell pathways. In the retina,
there are around five times as many X RGCs as Y RGCs. In the geniculate, this ratio is reduced to
around 2:1, since Y-RGCs innervate many more LGN relay cells than X RGCs (Sur et al., 1987;
Sherman & Koch, 1990). This increase in the proportion of Y-like cells in the geniculate reduces
the dominance of the X pathway that exists in the retina.

Another role of the LGN may be captured in the way that geniculate cells respond over time.
Lagged and non-lagged geniculate cells can transform retinal responses in the temporal domain.
It has been hypothesised that just as the retina removes spatial correlations using centre-surround
receptive fields (Atick & Redlich, 1992), the LGN removes temporal correlations using the tem-
poral response characteristics of lagged and non-lagged cells (Dan, Atick, & Reid, 1996). Finally,
it has also been suggested that geniculate cells adjust the variance of retinal signals on their way
to the cortex, transforming the non-linear variance of retinal cell firing rates to mean firing rates
into linear variances. (Levine, Cleland, Mukherjee, & Kaplan, 1996).

2.5 Factors influencing neural development

The first half of this chapter has focused on the properties of the visual pathway from the retina,
through the LGN, up to the cortex, and back down to the LGN. The second half of this chapter
considers the central question of how this pathway comes into existence during the early stages of
the animal’s development. In general, we are concerned with how one set of cells, the presynaptic
cells, connects to another group of cells, the postsynaptic
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after the optic nerve had been severed. Their results showed
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2.5.2 The role of experience in development

The role that visual experience plays in the development of visual pathways was first assessed
by a series of experiments looking at the development of ocular dominance in cat visual cortex
(Wiesel & Hubel, 1963a, 1963b; Hubel & Wiesel, 1963). In a newborn Kitten, most cortical cells
in the primary visual cortex (area 17) respond to stimulation of either eye, although there is a bias
favouring stimulation of one of the eyes. After around six weeks of normal visual experience, most
cells have adapted to respond to stimulation of only one eye, ignoring stimulation from the other
eye. Overall, both eyes normally innervate an equal number of cortical cells. However, if one of
the eyes is covered from birth for six weeks so that it does not receive any visual input, most (if not
all) of the cortical cells do not respond to stimulation of the eye that was deprived of vision. Wiesel
and Hubel (1963a) repeated these experiments with kittens of different ages. They found that the
older the kitten was at the onset of deprivation, the weaker the effects of deprivation. Furthermore,
depriving one eye of vision during adulthood did not affect the pattern of ocular dominance at all.
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found. Hence the ability to generate barrels is not due to some intrinsic property of somatosensory
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These experiments confirmed the existence of spontaneous activity, correlated across neighbouring
retinal cells, in the developing retina.

Since then, two developments in recording techniques have revealed more details about the na-
ture of this spontaneous activity. First, the development of the multielectrode array has allowed the
activity of around one hundred neighbouring retinal ganglion cells to be recorded simultaneously
(Meister et al., 1991). These recordings show that the cells
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Smetters, Hahm, and Sur (1994) rightly concluded that there could be other activity-dependent
mechanisms at work, or that the NMDA receptors are used to detect correlated activity for other
purposes, such as topographic map refinement (Cline & Constantine-Paton, 1989).
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using activity-dependent processes which eliminate inappropriate synapses and strengthens to-
pographically correct synapses. It is likely that this combination of early activity-independent
processes followed by later activity-dependent processes apply to other pathways, both visual and
non-visual (Goodman & Shatz, 1993).

2.9 Summary

This chapter has introduced the main elements of the early visual pathway in mammals from the
retina to the geniculate, and from the visual cortex back down to the geniculate. The central
hypothesis of this thesis has been introduced, stating that the LGN develops to a near-adult state
using a combination of activity-independent and activity-dependent processes:

¢ Retinal axons from both eyes meet at the optic chiasm and project into the appropriate LGN
using a combination of activity-independent markers (Hankin & Lund, 1991; Goodman
& Shatz, 1993). The initial retinotopic map is quite coarse and most geniculate cells are
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¢ patchy maps — Figure 3.1(b). These maps show local smooth organisation, but no global
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o stripes— Figure 3.2(b). In comparison to patches, when the inputs from both eyes are of the
same size, stripes tend to arise. The best-known example of stripes is the pattern of ocular
dominance in area 17 of visual cortex. (Hubel & Wiesel, 1972; LeVay, Hubel, & Wiesel,
1975).

o layers — Figure 3.2(c). The output map can organise so that all of the inputs from one eye
are gathered together into one large region. This is closest to the form found in the LGN
(Sanderson, 1971a).
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(a) Patches (b) Stripes (c) Layers

Figure 3.2: Common patterns of ocular dominance. Each postsynaptic unit is coloured black if it
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Mechanisms for modelling retinogeniculate development

Term | Meaning

il Index for presynaptic unit

j.k Index for postsynaptic unit

Wij Feedforward weight connecting presynaptic unit i to postsynaptic unit j
Lk Lateral weight connecting postsynaptic unit j to postsynaptic unit k
Npre | Number of presynaptic units

Npost | Number of postsynaptic units

Xi Activity of presynaptic unit i

Y Activity of postsynaptic unit j

o Size of neighbourhood

€ Rate of weight-update

Table 3.1: Terms used for describing model elements.

presynaptic axon and the postsynaptic dendrite. Additiona
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o Correlated output.

In a topographic map, neighbouring postsynaptic units have
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salient features from retinal activity. However, this means that a network using low-dimensional
inputs cannot discover new features — for example, if the feature vector codes only for centre
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3.6 Normalisation methods and resource limitations

Neural systems work within several constraints, including restrictions on firing rates and synaptic
strengths which must be both positive and bounded at some upper limit. These constraints are
often introduced into models for two reasons. First, many Hebbian-based modification rules are
unstable, adapting weights without bounds. Normalisation constraints ensure that weights remain
within limits. Second, the normalisation constraints introduce competition between weights: as
one connection strength increases, others must decrease to keep the normalisation sum constant.
It can also be argued that constraints are introduced simply because they are present in the natural
system: synaptic strengths cannot increase without bounds, and cells have upper limits on firing
rates. However, it is often better to keep the model simple and introduce extra mechanisms only
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contrast, subtractive normalisation changes both the direction and magnitude of the weight vector.
This difference is demonstrated for a two-dimensional vector in Figure 3.4. Divisive normalisation
maintains the direction of the weight vector, whereas subtractive normalisation will tend to push
elements of the weight vectors to extreme values. When these normalisation schemes are used in
conjunction with modification rules, they can drastically affect the development of a postsynaptic
unit’s properties such as ocular dominance (Miller & Mackay, 1994; Goodhill & Barrow, 1994).

Normalisation of (4,2) vector

25 T T
2 Original B
15 T
o~
=
=
Q
2
1r Divisive B
05 ..z~ Subtractive T
0 Il Il Il Il
0 1 2 4 5
Weight 1

Figure 3.4: A simple comparison of divisive and subtractive normalisation. The original weight
vector (4 2)T is to be normalised such that w; +w, = 3. Under divisive normalisation, the vec-
tor becomes (2 1)7, which lies in the same direction as the original vector. Under subtractive
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contrast, other experiments have shown that there are limits on the number of contacts each postsy-
naptic cell can make. First, the addition of an extra eye to innervate the optic tecta of tadpoles did
not affect the number and size of connections to tectal cells when compared with normal two-eyed
tadpoles (Norden & Constantine-Paton, 1994). Second, the size of retinal axonal arbors varied in
accordance with changes in the number of retinal or tectal cells (Xiong, Pallas, Lim, & Finlay,
1994). For details of other related experiments, see (Hayes & Meyer, 1988b; Sabel & Schneider,
1988; Pallas & Finlay, 1991). These experiments show that there are limits on the number of
contacts that a cell (either presynaptic or postsynaptic) can make, although whether constraints
simultaneously exist at both sites within one system is still unknown.

3.7 Weight modification rules

Modification rules specify how the weights should be updated in response to the state of ele-
ments of the network. Such elements include the activation level of units and the value of other
weights. To keep the rules fairly plausible with respect to biological principles, the rules should
only make reference to quantities that are simple to calculate and available locally to the weights
being changed. Many such rules have been created for modelling neural development. In this sec-
tion, the two main types of modification rule used for modelling the development of topography
and ocular dominance are described.

3.7.1 Correlational rules

Most modification rules capture the basic principle of the Hebbian synapse (Hebb, 1949). This
states that if a presynaptic cell and postsynaptic cell are b
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Biological evidence for the covariance rule
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Weight change
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postsynaptic activity was beneath the low threshold, neither LTD nor LTP occurred. This threshold
for LTD has been incorporated into a BCM-like rule to create a rule with two thresholds, known
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units (or both) are therefore required to specify weight decrements which prevent weights increas-
ing without bounds. Both the Kohonen and Obermayer/Goodhill rules are “hard-competitive”
rules because at each iteration, only the weights of a subset of postsynaptic units are updated.

The elastic net

The elastic net (Durbin & Willshaw, 1987) combines both a regularisation and a matching term
into one rule which is similar to the Kohonen rule. In the elastic net, each postsynaptic unit j
has a receptive field of Gaussian shape with width k centred on the input space at wj. For each
input vector x
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other relevant models which investigate the development of
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visual pathway (such as tectal grafts and mismatch experiments). Some of the relevant biological
manipulations will be mentioned, although for more details refer back to the original papers.

Table 3.3 describes the components of the major models for the development of topographic
mappings. As can be seen from this table, the various model components can be combined in
different ways to investigate retinotopic map development. All models produce a refinement of
topography at the single-unit level. For those models not using chemical markers to code for
proximity, extra mechanisms are needed to choose between alternative global layouts of the maps,
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development, there are no markers in the postsynaptic sheet, and so the global orientation of the
map is dominated by the initial connection strengths. In regeneration experiments however, post-
synaptic units already have markers as a result of the initial development before regeneration.
These regeneration experiments produced novel map formations if the markers preferred a differ-
ent global map orientation to the orientation specified in the regenerated weights.

The tea trade model was abstracted into a set of equations suitable for theoretical analysis by
Haussler and von der Malsburg (1983). An eigenvector analysis showed that by suitable selec-
tion of model parameters, the eigenvalues of all non-diagonal eigenvectors were negative, leaving
just the two diagonal eigenvectors with positive eigenvalues. The diagonal eigenvectors therefore
dominate development to produce an ordered retinotopic mapping.

Whitelaw and Cowan (1981) took a different approach by using both neural activity and chem-
ical markers to encode proximity of presynaptic units. In the model, group Il labels were inter-
preted as adhesion coefficients to represent a tendency for presynaptic units to bind to certain
postsynaptic units. Weight update was Hebbian based modulated by the adhesion coefficients.
This model was later updated to account for more biological data (Cowan & Friedman, 1991).
First, it introduced a tendency for neighbouring presynaptic units to stick together to account for
the polarity mismatch experiments (Meyer, 1979). Second, it introduced random depolarisation of
synapses so that in the absence of any retinal activity, a rough retinotopic map would still form.
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was not surprising given the results from earlier models using anticorrelated between-eye inputs
(Miller et al., 1989).

Elliot, Howarth, and Shadbolt (1996) adopted a rather different approach to ocular dominance
by using a network which allowed constant sprouting and retraction of connections. At each
time step, sprouting or retraction of presynaptic axons was performed probabilistically depending
on how the sprouting or retraction affected the energy of the system. The energy function was
constructed to directly introduce competition between inputs so that no extra normalisation terms
were required. In the original model, the two eyes were never correlated, although later work
showed that segregation of inputs from different eyes can occur in this model even in the presence
of strong between-eye correlations (Elliot & Shadbolt, 1996).

The last entry in Table 3.4 describes a mathematical analysis and simulation of ocular domi-
nance within a competitive network (Bauer, Brockmann, & Geisel, 1997). This was not the first
model to use a competitive network for ocular dominance, but the other models also investigated
the development of topography, and so are discussed in the next section. Analysis of the Koho-
nen rule showed that ocular dominance can develop in the presence of between-eye correlations,
and that the larger the between-eye correlations, the narrower the width of the ocular dominance
stripes. Numerical simulation of the model showed a close fit to the analytical results, verifying
the analysis. Additionally, the simulation results were unaffected by the choice of postsynaptic
normalisation (divisive or subtractive), in comparison to earlier work by Goodhill (1992).
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Models of ocular dominance development

synapses from different eyes.

between eyes.

Model Encoding of ocularity Correlated output Modification rule Constraints Stripe width
Malsburg R?t".]al Inputs: _correlated Fixed Mexican-hat lateral . Postsynaptic normalisa- Range of inhibitory lat-
within-eye and anticorrelated . . Correlational rule. . . .
(76) interactions. tion of weights. eral connections.
between-eyes.
Fixed ocula_rlty markers_ UNIaue ) ateral diffusion of ocu- Similarity between presy- Normalisation of rr_1arke_r > Compromise between to-
Malsburg to each eye in presynaptic units. . . . . at each postsynaptic unit. . .
. ) larity markers in postsy- naptic and postsynaptic . . . pographic and ocularity
(79) Topographic markers fixed for . Divisive presynaptic nor-
. naptic sheet. markers. S . markers.
all units. malisation of weights.
. . . Weight change propor-
Synaptlc _den5|ty fu_n ctions Modification rule sums tional to convolution of Implicit postsynaptic Extent of within-eye and
. with Mexican-hat profile for . . . . N . .
Swindale over neighbouring neighbouring  synapses normalisation of weights. between-eye synaptic
synapses from same-eye and . . . . . .
(80) . . . synapses using synaptic and synaptic density Upper bound on each density functions.
inverse Mexican-hat profile for : . . - ;
density functions. functions  within and weight.

Bienenstock
(82)

Retinal inputs: uncorrelated be-
tween eyes.

Not considered.

BCM rule.

Time varying threshold.

Not considered.

Correlation matrix;:  Gaussian

within-eye correlations and zero Postsynaptic Extent —of  within-eye
Miller (89) n-cy . Fixed lateral interactions.  Correlational rule. ynapH correlations and lateral
(or inverse Gaussian) between- normalisation. . .
. interactions.
eye correlations.
. . . ep Boun n h weight.
Montague Retinal inputs: anticorrelated Lateral diffusion of post- . ounds o each Weig t .
. Covariance-based rule. Other normalisations not Not considered.
(91) waves. synaptic molecule. .
mentioned.
. . . i ilisti rout- .
. Retinal inputs: anticorrelated Energy function SUms Erobab SFC 3P O.Ut None (sprouting and re- .
Elliot (96) over nearest postsynaptic ing/retraction according . . Not considered.
between eyes. . traction are independent).
neighbours. to energy of system.
. I . . Between-eye corre-
Retinal inputs: correl within  Neighbourh weigh . .
Bauer (97) etinal inputs: correlated wit eighbourhood eignt Kohonen rule. None. lations and width of
and between eyes. update. .
neighbourhood.

Table 3.4: Summary of the main models of ocular dominance development. Items not investigated by the models are marked “Not considered”. Full references
for each model can be found in the text.
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Models of the joint development of ocular dominance and topography

Model

Encoding of ocularity and

Correlated output

Modification rule

Constraints

Stripe width

topography
Obermayer | Feature vector  Neighbourhood
(91) (X,¥,9,9,2). weight update.
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3.12 Discussion
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next chapter, we therefore consider the form of the retinotopic map produced across the whole
postsynaptic sheet of the Keesing model.

Most of the previous modelling work has demonstrated that development of monocular units
depends on the correlations between eyes, the type of weight modification rule, and the type of nor-
malisation schemes used. First of all, when the two eyes are anticorrelated, all of the models can
produce monocular postsynaptic units. This is expected since presynaptic units from different eyes
are never simultaneously active. For the correlational rule, an eigenvector analysis of a correlation
matrix with between-eye anticorrelations predicts that monocular receptive fields will dominate
development (Miller & MacKay, 1992; Miller & Mackay, 1994). Most models additionally re-
quire some form of normalisation to keep weights within bounds and to introduce competition.
Out of these models, only the tea trade model used presynaptic, rather than postsynaptic, weight
normalisation, but even this model also used postsynaptic normalisation of ocular markers (von
der Malsburg, 1979). Presynaptic normalisation, when used, is only required to keep presynaptic
units connected to the same postsynaptic sheet.
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4.4 Results

In the following sections, we present the results of using the Keesing model under various dif-
ferent conditions. To provide a fair comparison between the different simulations, unless stated
otherwise, all parameter values were kept the same. A list of the model parameters, along with
their meaning and typical values, are given in Table 4.1.

Parameter Meaning Typical value
Pw Probability of a new wave starting 0.02

Ow Standard deviation of the wave 0.85-1.00

R Refractory period between waves 1

T Number of time steps wave is present on retina 50 (Xpre)

Xpre Width of each retina 50

Npre Number of presynaptic units 100 (Xpre X 2 eYeS)
Xpost Width of the LGN 10

Ypost Height of the LGN 8

Npost Number of postsynaptic units 80 (Xpost X Ypost)
Tore Target sum for weights from each presynaptic unit 1.0

Tpost Target sum for weights to each postsynaptic unit 1.25%

rs Enforcement rate of subtractive normalisation 1.0

€ Rate of weight update in covariance rule 0.001

o Presynaptic threshold in covariance rule 0.1

B Postsynaptic threshold in covariance rule 0.0125

Y Constant for growth term 0.1

r Radius of growth rule [2,1,0]

Py Probability of using growth rule 0.01

tr Number of epochs between radius decreasing by one 200
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networks, in practice the range of weights in most experiments is roughly constant. (The

two notable exceptions to this are shown in Figure 4.12, in the absence of any normalisation,
and Figure 5.4, when the probability of waves being generated is very small.)
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To reduce the effect of the non-dominant eye on the centre of mass measurements, we take
the centre of mass and standard deviation for the subset of the weight vector from the eye
providing the dominant input to the unit (given by zj). The centre of mass, Xj, and the
standard deviation, s;, for each postsynaptic unit are given by:

1 Xpre
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In addition to these plots, which show the state of the network at one particular time during
development, two types of plot are used to summarise how the network develops over the time
course of the simulation:

o Refinement of receptive field size.

The standard deviation of the centre of mass for a postsynaptic unit’s weight vector can be
used as a rough indicator of the width of the unit’s receptive field. These widths can be
averaged over all postsynaptic units to produce a “mean receptive field width”, which is
plotted at various stages of development. Error bars for each point indicate 1.0 standard
deviation of the receptive field width. An example is given in Figure 4.5(a).

¢ Development of monocularity.

This plot shows the average value of the monocularity index z; for all postsynaptic units at
various points during development for both the left (z; > 0) and right (zj < 0) eyes. Error
bars for each point indicate +1.0 standard deviation of the z; values. An example is given
in Figure 4.5(b).
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ferret retinal inputs cluster into patches rather than layers. This evidence can be interpreted as
suggesting that extra information must be provided for the formation of layers, and it is likely that
this information is specified by activity independent mechanisms (Sur, 1995; Angelucci, Clasca,
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Pre+Post normalisation Pre normalisation only

(a) Raw weight matrix
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Pre+Post normalisation Pre normalisation only
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bias, the amount of topographic bias was reduced to b = 10. The initial weights, along with
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4.6 The importance of normalisation

As mentioned in Chapter 3, most previous models of ocular dominance require postsynaptic nor-
malisation of weights to allow ocular dominance to develop. However, the results from Figure 4.6
and Figure 4.7 show that ocular dominance develops within this model either with or without
any postsynaptic normalisation. These experiments only investigated network development with
ocularity bias in the weights. To address the issue of normalisation more thoroughly, a set of ex-
periments were therefore run to examine the effects of all possible combinations of normalisation
techniques.

Normalisation can be applied either divisively or subtractively to both the presynaptic and
postsynaptic units. In addition, there is the option to ignore normalisation of either pre- or postsy-
naptic units. This gives us nine combinations of normalisation techniques. The same network with
weights initially biased for ocularity and topography (using the same initial weights as shown in
Figure 4.10) was run nine times using each combination of normalisation technique. The results
from these nine experiments are summarised in Figures 4.12, 4.13, 4.14 and 4.15.

From these figures, several points can be made concerning the role of the different normalisa-
tion techniques upon network development.

4.6.1 The effect of normalisation upon topography

First of all, for the normal pattern of topography to develop, the presynaptic normalisation must
be divisive. As long as the presynaptic normalisation is divisive, the form of the postsynaptic
normalisation is mostly redundant, as shown by Figures 4.12
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and therefore the presynaptic units have disconnected from the postsynaptic sheet. (Any activity
in these presynaptic units is therefore not propagated to the postsynaptic sheet.) If the growth
rule is removed from the model, all presynaptic units can remain connected to the postsynaptic
units in the absence of presynaptic normalisation (Figure 4.18(d)), although this prevents the nor-
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Postsynaptic normalisation

Divisive
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Presynaptic normalisation
Divisive Subtractive None

Figure 4.12: The effect of different normalisation methods — 1: weight matrices.
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Figure 4.17: Projective field for one presynaptic unit from the right eye using either divisive
(solid line) or subtractive (dashed line) presynaptic normalisation. These weights were taken from
presynaptic unit 75 in the experiments with no postsynaptic normalisation.
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4.6.3 The importance of the ordering of the normalisation techniques

The previous section has shown that presynaptic normalisation plays a crucial role in develop-
ment, unlike postsynaptic normalisation. In these experiments, the presynaptic normalisation was
always applied before the postsynaptic normalisation. Postsynaptic normalisation may be redun-
dant simply because it is always performed after the presynaptic normalisation. To test for this
possibility, a set of experiments were run varying the probability of whether presynaptic or post-
synaptic normalisation was applied first.

A new parameter, pn, was therefore introduced. This controlled the probability of postsynaptic
normalisation occurring before presynaptic normalisation. For all of the experiments presented so
far in this chapter, this parameter was implicitly set to 0.0 so that divisive presynaptic normal-
isation was applied first and then subtractive postsynaptic normalisation afterwards. Using the
same set of initial conditions as for the previous normalisation experiments, network development
was monitored using a range of values for p,. The results of these experiments are shown in
Figure 4.19.

For all values of p,, the network developed the usual two eye-specific layers, although high
values of p, produced a small number of binocular units and monocular units in the wrong layer.
The strongest effect of the p, parameter was that it affected receptive field size: high values of
pn produced sharper and narrower postsynaptic receptive fields. This sharpening effect of the
receptive fields is due to the subtractive normalisation which is sometimes applied first when
pn > 0.0. As a consequence of the sharper receptive fields, the topography within each row of the
LGN is not so smooth as the value of
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normalisation applied second will have a very low error.) Th
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4.6.5 Capping subtractive presynaptic normalisation

The previous experiments have shown the importance of divisive presynaptic normalisation for the
development of topography in the LGN. Networks using subtractive presynaptic normalisation are
unable to replicate the topographic projections due to the way that the normalisation pushes indi-
vidual weights to extreme values. Since there is no maximum weight value imposed on weights
in the network, subtractive normalisation forces all of the synaptic weight strength into one of the
elements of the weight vector, with all other elements pushed to the minimum weight value of
zero, as shown in Figure 4.17. If, however, there is a maximum value imposed on each weight
(which will be called wmax), more than one weight for a unit is forced to take a non-zero value.
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weights have strength 0 or wpyax. In contrast, simulations using divisive presynaptic normal-
isation produce weights distributed over a wide range of values.
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4.7 Summary

This chapter has introduced the Keesing et al. (1992) model of retinogeniculate development.
In the first half of this chapter, we have replicated the results of the Keesing model, showing in
particular how the form of the initial weight bias influences network development. This replication
stage was necessary since the only published information on the model omitted a number of crucial
details of the model, including the form of the inputs and the nature of the initial weights (Keesing
et al., 1992). We have been able to replicate these initial results, and also expand on the nature
of the topographic map across all rows of the LGN, another aspect of the model that was not
described in the original publication.

The second half of the chapter has analysed the role of the normalisation mechanisms in net-
work development. In contrast to the original presentation of the model (Keesing et al., 1992),
we have shown here that the form of the postsynaptic normalisation is redundant, as long as the
presynaptic normalisation is implemented divisively, rather than subtractively. Thisis a new result,
in contrast to previous models of ocular dominance which have used some form of postsynaptic
normalisation (reviewed in Chapter 3) to ensure postsynaptic units become monocular. The only
other model that relies on presynaptic normalisation of weights is the model by (von der Mals-
burg, 1979), although it also used a normalisation of the ocular marker concentrations induced
into each postsynaptic unit. Postsynaptic normalisation (of either weights or markers) is very
likely to produce monocular units, since any increase in weight strengths for some units from
one eye is accompanied by a uniform decrease of all weights. Using subtractive enforcement of
postsynaptic normalisation increases the tendency for monocular units due to the way that sub-
tractive normalisation forces individual weights to extreme values. We have also shown that in
some cases, the presynaptic normalisation can be implemented subtractively, as long as the nor-
malisation is applied slowly and individual weights are con
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5.2.1 The relationship between the rate of wave generation and the
probability of activity in both eyes

When the waves are independently generated in each eye, thre
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pw | O Oo O Oz
0.002 | 0.091 0.826 0.165 0.008
0.003 | 0.130 0.756 0.227 0.017
0.005 | 0.200 0.640 0.320 0.040
0.020 | 0.500 0.250 0.500 0.250
0.200 | 0.909 0.008 0.165 0.826
0.500 | 0.962 0.001 0.074 0.925
0.800 | 0.976 0.001 0.047 0.952

Table 5.1: Theoretical probability of eye activity as a function of p,,. Measurements of the corre-
sponding probabilities from the simulations of eye activity were always within four percent of the
predicted values.

1. Op > max(01,02) (pw < 0.01). Here it is most likely that both eyes are quiet.

2. 01 > max(0g,02) (0.01 < pw < 0.04). In this range, the most likely situation is that one
eye is active while the other eye is quiet.

3. O2 > max(0g,01) (pw > 0.04). In this last range (the widest of the three ranges), both
eyes are likely to be jointly active most of the time.
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the normal patterns of ocular dominance and topography. A common feature of both rules how-
ever is that the average receptive field width increases inversely with p,, (see Table 5.2). These
results must be interpreted with some caution however, due to the rather high standard deviation

of receptive field widths in comparison to their mean values.

Pw Covariance

Mean + standard deviation
Active-cov.

0.002 N/A
0.003 N/A
0.005 N/A
0.020 | 4.305 + 4.956
0.200 | 2.199 + 0.869
0.500 | 2.184 + 1.001
0.800 | 2.109 + 0.679

11.384 + 4.718
5.793 £ 5.770
3.762 + 4.965
1.591 + 2.780
0.889 £ 0.046
0.887 £+ 0.054
0.896 £ 0.111

Table 5.2: Mean receptive field width for different values of p,, using either the covariance or
active-covariance rule. For the entries listed N/A, all postsynaptic units were binocular, which
precluded taking any receptive field measurements.

Frequency of use / % Weight change per epoch
Pw 1 2 3 4 1 2 3 4
0.002 | 0.495 0.011 15.468 84.027 | 95.5920 -1.1990 -666.186 5830.838
0.003 | 0.763 0.015 23.032 76.191 | 164.7320  -1.4550 -1062.795  5279.894
0.005 | 1.103 0.018 32.381 66.498 | 257.7480 -1.7380 -1571.903  4600.636
0.020 | 1.062 1.732 23.810 73.396 | 1344.4520 -393.7110 -7218.146  4541.466
0.200 | 1.324 3.427 23559 71.690 | 3108.4650 -819.3380 -13704.282 4365.681
0.500 | 1.459 3.540 25.339 69.661 | 3339.5660 -852.4340 -14409.363 4250.804
0.800 | 1.609 3.453 27.526 67.412 | 3448.7770 -846.1370 -14552.396 4185.087
(a) Covariance rule
Frequency of use / % Weight change per epoch
Pw 1 2 3 4 1 2 3 4
0.002 | 0.382 0.124 11.815 87.680 | 112.7830 -24.6050 -806.365 6017.041
0.003 | 0.409 0.368 12.171 87.052 | 242.7040  -86.3470  -1652.527  5920.608
0.005 | 0.403 0.718 11.412 87.467 | 432.6690 -183.7100 -2872.521 5948.982
0.020 | 0.671 2.123 14.894 82.312 | 1513.0623 -562.6000 -8218.576  5538.130
0.200 | 1.063 3.689 18.945 76.303 | 3235.3990 -957.5940 -14278.994 4969.223
0.500 | 1.137 3.863 19.737 75.264 | 3473.8570 -999.0490 -15003.074 4875.800
0.800 | 1.249 3.813 21.323 73.615 | 3577.4920 -987.0899 -15108.254 4773.361

(b) Active-covariance rule

Table 5.3: The frequency of use and the amount of weight change per epoch for each case of the
covariance and active-covariance rule. Cases refer to the cases of the covariance rule as shown in
Table 3.2. For the active-covariance rule, although values of weight change for case four are given
here, these weight changes were ignored.
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5.3 Development of the LGN under conditions of monocular deprivation
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Multiplicative and divisive normalisation
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Divisive normalisation
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unit j, the polarity dominance is denoted f;, and is defined as:

fon
fj=
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postsynaptic units.

The introduction of polarity-specific waves did not radically affect the nature of the topo-
graphic mapping, as shown by the topographic plots in Figure 5.12. The final projection columns
for the network, shown in Figure 5.14, are well organised, with only a few units in the wrong posi-
tion. The average wave width at the end of development was slightly bigger than for the previous
simulations (mean = 3.795, s.d. = 0.695, compared with mean = 2.496, s.d. = 0.737 for L4R8 of
Figure 4.11 and mean = 2.922, s.d. = 0.894 for L2R4 of Figure 4.11). This increase in receptive
field width was expected due to the increase in the width of the retinal waves after 400 epochs.
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5.5.4 Weakening the anticorrelations between on- and off-centre inputs

The parameters pon and pofr control the nature of the correlations between the on- and off-centre
units. In the previous section, the values po, = 0.5, posr = 1.0 were used. This ensured that once
the polarity-specific waves had been introduced, an on-centre unit and off-centre unit would never
be jointly active, maximising the chance that units of different polarity would not jointly innervate
the same postsynaptic unit. However, such anticorrelations have not been found in the developing
retina. Instead, as mentioned before, when on-centre cells are active, neighbouring off-centre cells
also tend to be active, but not vice-versa (Wong & Oakley, 1996). These weaker anticorrelations
can be modelled by reducing the value of py below 1.0 to allow some retinal waves to have both
on- and off-centre activity (using the default rule from Table 5.5).

Since off-centre cells are active more often than on-centre cells during the period of polarity-
specific waves, a set of experiments were performed with po, reduced below 0.5, and pog Set to
Pon + 0.5. This means that off-centre waves are present half of the time, with the rest of the time
divided between on-centre waves and mixed on- and off-centre waves. As pon is reduced to 0.0,
only off-centre and mixed on- and off-centre waves are generated. This is the situation found in
the developing retina (Wong & Oakley, 1996).

Figure 5.15 shows the results of development using po, = 0.48,0.46,0.44,0.42 with pog =
Pon + 0.5 in each case. The plots of polarity segregation for each experiment clearly show that
as pon decreases, the overall degree of polarity segregation is greatly reduced. The other network
features, ocular dominance and topography, were unaffected. The existence of mixed on- and
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5.6 Comparison with biological data
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light-evoked anticorrelations between on- and off-centre cells driving polarity segregation.

5.7 Discussion

The formulation of the waves used in this thesis is relativel
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The active-covariance rule
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preventing them from adapting in the same direction to the input stimuli. Miller’s model is slightly
more complicated: in the absence of inhibitory lateral connections, as long as there is presynaptic
normalisation then stripes still develop (Miller et al., 1989).

6.2.2 Competition between topography and ocularity

For those models considering the development of both ocular dominance and topography, stripes
arise through competition between these two features as wel
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with highest variance, and represents them in the network. Other elements of the input vector with
variance below a critical value do not get represented in the map (Ritter & Schulten, 1988). This
is referred to as the “automatic selection of feature dimensions” (Kohonen, 1988). As is shown
in more detail in the next section, the variance of the ocularity feature controls stripe formation:
the higher the ocularity variance (compared with the other input variances), the wider the ocular
dominance stripes.

6.3 Obermayer’s model for stripe formation

All of the models mentioned in the last section provide different reasons for how stripe width
varies under different conditions. Out of all of the models, the model by Obermayer et al. (1991)
is arguably the simplest because it uses feature vectors to represent the neural activity distributed
across two retinae. This model has therefore been chosen to investigate the nature of stripe for-
mation in the cortical simulations. We also extend the postsynaptic sheet into a three-dimensional
block so that the model can be applied to the problem of retinogeniculate development.

6.3.1 Implementation details of Obermayer experiments

The network consists of a presynaptic sheet with three units fully connected to a set of postsynaptic
units. The postsynaptic units are arranged into a three-dimensional block for the purposes of
neighbourhood weight updating. (For the two-dimensional simulations, the Z dimension of the
postsynaptic block was set to one.)

The initial weights are set at random, with no topographic or ocular bias. One iteration of
the model consists of generating and presenting a feature vector, calculating postsynaptic unit
activations and updating the weights of the winning and neighbouring units. One epoch of the
model corresponds to 100 iterations, after which various parameters, such as the weight-update
rate and size of neighbourhood, are updated. Table 6.1 describes the equations and parameters
used for these experiments.

6.3.2 Visualisation of maps formed in Obermayer experiments

Each postsynaptic unit receives inputs via three weights. The first two weights code for the centre
of mass and the third weight codes for the ocularity to which the unit is most responsive. Visualisa-
tion of each postsynaptic unit’s preferred stimulus is straightforward. The centre of mass for each
postsynaptic unit j is drawn on a graph at the point (x = wyj, y = Wyj). Lines are drawn between
the points of neighbouring postsynaptic units to indicate the location of neighbouring postsynaptic
units. The ocularity of each postsynaptic unit is encoded in z = wsj. The value of z for all post-
synaptic units is visualised using a Hinton diagram — the size of the square is proportional to the
magnitude of z (scaled to a maximum size of zp,) and the colour of the square indicates the sign
of z (black for negative values representing dominant left-eye input and white for positive values
representing dominant right-eye input).

6.3.3 How the variance of ocularity affects stripe width

To illustrate the principle of feature selection within the standard cortical model, several experi-
ments similar to those presented in (Obermayer et al., 1991) were replicated. Three-dimensional
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Inputs

Activation rule
Winner

Weight modification
Distance measure
Index function

Neighbourhood function

X1 = rnd(0,15), xo = rd(0,15), X3 = +Zpat

Yj = Yia(Wij—Xi)

Findm:  yn<y;Vj

Awij = g(t)d(j, m)(Xi — wij) (t is the epoch number)
d(j,m) = n(P(m) —Px(J),P(m) = PRy(j),P(m) = P;(]))
J=Px(J) + (Xpost x Py(J)) + ((Xpost X Ypost) X Pz(j))1
n(X,y,2) = exp(
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input vectors (x,y,z) were used as input to a Kohonen network with a two-dimensional sheet of
postsynaptic units of size Xpost = 32, Ypost = 32 (assuming Zpost = 1). Each feature vector repre-
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6.4 A new model of retinotopic map formation in the LGN

In the previous experiments, the units in the postsynaptic sheet were arranged in a two-dimensional
sheet. In the experiments presented in this section, the postsynaptic sheet is extended into a three-
dimensional block to make the model similar to the LGN. The three-dimensional arrangement of
the postsynaptic block is shown in Figure 6.3. All other elements of the model remained the same.

When the network is presented with the three-dimensional feature vector, postsynaptic units
become monocular even with values of zp, that were too low for ocularity to be represented in
the two-dimensional network. Figure 6.4 shows the results of presenting the same retinal inputs
as used in the two-dimensional experiments into the three-dimensional postsynaptic block of size
(Xpost = 32, Ypost = 32, Zpost = 4), for zpar = 0.2 and zp4 = 2.0.

To analyse the maps, the three-dimensional postsynaptic block has been divided into multiple
two-dimensional planes (as illustrated in Figure 6.3). Z-plane n corresponds to all of the units in
the plane Z = n of the postsynaptic block. Figure 6.4 shows the results of network development
with zpat = 0.2. In this case, the top two Z-planes of the network responded to the right eye and
the bottom two Z-planes of the network to the left eye. Within each Z-plane, the representation of
visual space was complete and topographic. Figure 6.5 shows the topographic maps from the same
network when the postsynaptic sheet is divided into multiple X-planes. (X-plane n corresponds to
all of the units in the plane X = n of the postsynaptic block.) Each X-plane covers a small part of
the visual space, but all of the X-planes taken together cover the entire visual space. Additionally,
neighbouring X-planes cover neighbouring parts of the visual space. (X-planes 1 and 32 cover a
slightly larger region of visual space than the other planes due to boundary effects.) The X-planes
are similar to the projection columns found in the LGN (Sanderson, 1971a).

However, with a bigger value of zpa, such as z,at = 2.0, ocularity is the primary map feature
and visual space a secondary feature (similar to the two-dimensional network shown in Figure 6.2).
Each Z-plane of the network developed in the same manner, although the border between left- and
right-eye regions varied systematically through the planes. In Figure 6.4, the left half of each
Z-plane is responsive to the right eye, and the right half of each Z-plane is responsive to the left
eye. In this case, the topographic plots in both the X- and Y-planes show no correspondence with
the LGN projection columns. A sample of some topographic maps in the X- and Y-planes are
shown in Figure 6.6. For the X-plane plots we find that the maps for the planes equidistant from
the centre (X-planes i and 33 —i for all values of i = 1...16) cover almost the same region of the
input space. For each pair of X-planes, X-plane i contains units responsive to the right eye, and
X-plane 33 — i contains units responsive to the left eye. In contrast, each Y-plane topographic plot
has folded over on top of itself, so that each part of visual space is covered by two units (one for
each eye) in each Y-plane.

6.5 Correspondence with topography and ocularity in the LGN

The cat LGN has a very distinctive three-dimensional shape, as shown in Figure 2.3. It can be
approximated however as a three-dimensional block of postsynaptic units, with roughly equal
extent in the lateral-medial (X) and anterior-posterior (Y) dimensions, but a much smaller dorsal-
ventral (Z) extent. The maps in Figure 6.4 can be compared with the retinotopic and ocularity



130 Chapter 6. Factors affecting ocular dominance stripe formation

Z-plane

\4 X

X-plane

Figure 6.3: Three-dimensional arrangement of postsynaptic units in the Kohonen network. Post-
synaptic units are positioned uniformly throughout the three-dimensional block. The X dimension
of this block corresponds to the medial—lateral dimension of the LGN. Likewise, the Y dimen-
sion corresponds to the anterior—posterior dimension, and the Z dimension corresponds to the
dorsal—ventral dimension. The figure shows two different two-dimensional slices through the
postsynaptic block. The grey slice is a Z-plane which samples all postsynaptic units at the same
dorso-ventral position. The black slice is a X-plane which samples all postsynaptic units at the
same medio-lateral position. Key: A —anterior. P — posterior. D — dorsal. V — ventral. L — lateral.
M — medial.

mappings within the LGN.

First, when zp: = 0.2, the plots show a similar retinotopic organisation to that found in the
LGN: units at the same (X, Y ) position but at different depths (Z) receive input from the same part
of visual space. Furthermore, the map has segregated into eye-specific layers (where a layer is used
here to mean the same as a Z-plane) in the same way as the LGN. (In the LGN, the contralateral
inputs always innervate the top of the LGN. In these experiments there is no preference for the
contralateral inputs to go to the top of the LGN, and so the eye providing input to the top Z-plane
varies from simulation to simulation. It should be relatively simple to ensure that the contralateral
eye always dominates the top half of the postsynaptic block by placing a suitable bias on the initial
weights.) The map has automatically oriented itself to represent the input features with the highest
variance (x,Yy) along the largest dimensions of the postsynaptic block (X,Y ). The remaining input
feature with the smallest variance, z, is mapped onto the smallest dimension of the postsynaptic
block (2).

This segregation into eye-specific layers is dependent however on the number of Z-planes in
the postsynaptic block. When Z = 4, the network can easily divide into two halves, so that Z-planes
1 and 2 can respond to one eye, and Z-planes 3 and 4 can respond to the other eye. When Z = 3
however, the network fails to completely segregate into separate layers, as shown in Figure 6.7.
Monocular units for each eye are found in each Z-plane, although as shown in Table 6.2, there is a
tendency for units from the left eye to settle in Z-planes 1 and 2 and for the right eye to settle in Z-
planes 2 and 3. This non-complete segregation into eye-specific layers also affects the topography
of units within each layer: units responding to different eyes respond to different parts of the visual
space. This failure to segregate into eye-specific layers is most likely to be due to the odd number
of Z-planes in the network, making it impossible for an equal number of Z-planes to be responsive
to each eye.

However, when z,5 = 2.0, the map develops a different retinotopic and ocular structure to
that found in the LGN. For the map in Figure 6.4, the primary feature, ocularity, is mapped along
the X dimension of the postsynaptic block, rather than the Z dimension as before. The remaining
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inputs, (x and y), map along the X and Y dimensions of the postsynaptic block. The structure of
the map within each Z-plane is almost identical, except for a shift in boundary position between
different ocularity values. This does not correspond to the topographic and ocularity maps found
in the LGN, since both space and ocularity are primary features in the LGN.

z > 0 (right eye) z < 0 (left eye)

Figure | zZpat Zpost Z-plane n mean =+ s.d. n  mean =+ s.d.
6.1 |02 1 1 529 0.039+£0.029 | 495 —-0.04140.030
6.1(b) |06 1 1 503 0.475+0.162 | 521 —0.4744+0.154
6.1(c) |10 1 1 545 0.854+0.301 | 479 -0.85140.305
6.2 20 1 1 509 1.964+0.177 | 515 -1.96240.191
6.7 1.0 3 1 310 0.741+0.306 | 714 —-0.87740.230
2 523 0.673+£0.347 | 501 —0.67140.346
3 731 0.880+£0.227 | 293 —0.77040.305
6.4 02 4 1 1016 0.180+0.028 8 -0.04440.026
2 967 0.1221+0.034 57 —-0.086+0.041
3 72 0.094+0.035 | 952 —-0.122+0.032
4 24 0.04040.037 | 1000 -0.178+0.033
6.4 20 4 1 554 1.938+0.284 | 470 —-1.89340.383
2 541 1.891+0.351 | 483 -1.93740.216
3 479 1.930+£0.244 | 545 —1.89040.355
4 468 1.8854+0.390 | 556 —1.947+0.242
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Zpat = 02 Zpat = 20

14 - -
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6.6 Discussion

In this chapter, we have presented three main arguments for the development of ocular dominance
stripes. Although these arguments were developed with segr
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block. So, even when the network does not need to perform dime
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Conclusions

The aim of this thesis has to been to investigate the hypothesis that spontaneous waves of activity
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axis, in a similar fashion to the mapping of ocularity in the LGN. This self organisation can, in
principle, account for the overall layout of visual space and ocularity in the LGN. In practice
however, factors such as limited axonal branching may prevent such global reorganisation.

7.2 Future work

In this section we consider several directions in which this work could be extended.

7.2.1 Modelling of the retina

The model retina used here is very simplistic and could be imp
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times during map development. In the case of retinogeniculate development, projection column
maps should also be taken. Pictures of the initial map layout will indicate the amount of order
in the system before activity-dependent processes begin to reorganise the pathway. Subsequent
maps will then show the amount of reorganisation and refinement. These maps could be generated
using retrograde labelling of neighbouring geniculate cells (I. Thompson, personal communica-
tion). Producing such maps of visual space in the LGN during the period of retinogeniculate
development is complicated however due to the large increase in LGN volume at this time (Elgeti
et al., 1976). This may mean that it is possible to create these maps only after development of
the retinogeniculate pathway and the LGN has stabilised. Topographic maps of the mature LGN
under altered conditions, such as activity blockade and monocular deprivation, would, however,
be useful for comparison with both control maps and model predictions.

7.3.3 Development of on- and off-centre units

The segregation of LGN layers into polarity-specific sublaminae is believed to be activity-dependent
(Cramer et al., 1996; Cramer & Sur, 1997). There are two outstanding questions related to this seg-
regation. First, why do on-centre cells always go into the dorsal region of a lamina and off-centre
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Appendix A

Mathematical details

Al The derivation of ¥ = Cw from the covariance rule

Some models of visual system development assume that the covariance rule described by Se-
jnowski (1977) can be reduced to a rule of the form %—"t" = Cw (Linsker, 1986a; Miller et al., 1989).
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Assuming that the average value of each input is the same:

Xiy=x, Vi (A.4)
(Aw;) = a Zwk<xixk> — OYoX — axoigwk + ayopXo (A.5)

The covariance matrix of the inputs, C, is defined as:

Cij = ((Xi = Xi)(Xj — X))
= (XiXj) — (XiXj) — (XiXj) + (XiX})
= (XiXj) = Xj(Xi) = Xi(Xj) +XiX;
— (XiX}) — KK} — XiX; + Ki%;
Cij = (xixj) — X (using A.4)
(xixj) = Cij+X

This value of (x;x;) can be substituted into equation A.5:

(Aw;) = a Zwk(cik +X%) — aypX — axpX Zwk + ayoXo
=a ZwkCik +a Zwkiz — ayoX — axoiZwk + ayoXo
=a Zwkcik + Zwk(iza — OXoX) — AYpX + AYoXo

=a Zwkcik +Xxa Zwk(i— Xo) — aYo(X—Xo)
Assuming that the average input activity x is equal to xg, (Aw;) reduces to:

<AWi> =a ZWkCik

dw
or = =Cw.w= (W1, Wa,...Wn)"
Hence, given the two assumptions that weight changes occur on a slower timescale than pre-
sentation of inputs and that the average activation of all input units is Xg, the covariance rule
reduces to %—"t" = Cw. This form of the covariance rule is much simpler because it relies only upon

presynaptic, and not postsynaptic, activity levels.

A.2  Why eigenvectors dominate development in correlational-based
modification rules

Modification rules of the form %—"t" = Cw are often analysed by eigenvector analysis. Let us assume
that the eigenvectors of C are e, with eigenvalues A,. If C is real and symmetric, there are n real
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eigenvectors. Writing w in terms of the eigenvectors of C:

W= Z EaWs Where w, = e5-W (A.6)
a
dw
= Ceiw; + Ceowy + -+ -+ Cepwp (A.8)
dw
E = AMW1€e1 +AoWoes + - -+ ApWnep (Ag)

Therefore the rate of growth of the weight vector in the direction of each eigenvector is determined
by its eigenvalue. Any component of the weight vector in the direction of an eigenvector with
negative eigenvalue is quickly removed. Components of the weight vector in the direction of
an eigenvector with positive eigenvalue grows exponentially, with the eigenvector with highest
eigenvalue quickly dominating development. Assuming that the maximum eigenvector dominates
weight development before any constraint limits are met (su



