
A sim ilarity-basedm ethodforthegeneralization

offacerecognition overposeandexpression

Sharon Duvdevani-Bar,Shim on Edelm an,

A.Jonathan H owell,H ilaryBuxton

CSR P 480

January1998

ISSN 1350–3162

CognitiveScience

R esearch Papers



A similarity-based method for the generalization

of face recognition over pose and
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Figure 3: Left: the dimensions of variation in the face
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Figure 4: Left: a surface plot of the error rate vs. VP and EX (the numbers are listed in Table 1). Middle:

error rate vs. VP, averaged over the three di�erent values of EX. Right: error rate vs. EX, averaged over the

�ve di�erent values of VP. The mean error rate over the �ve viewing positions (spanning a range of �34

�

in

orientation), and the three expressions was 0:3074. The error bars correspond to �1 standard error of the mean

computed over the 18 test faces.

perience with similar objects (i.e., other faces seen

in a variety of conditions) serves to guide the system

in its treatment of the stimulus. Since the introduc-

tion of this concept of so-called class-based processing

[10, 14, 2, 11], several applications to face recognition

and related problems have been published [17, 4, 3].

Typically, these methods rely on the establishment

of a dense correspondence �eld, before any recogni-

tion or generalization is attempted. Approaches that

gave up this constraint showed a certain promise [9],

but could not compete, performance-wise, either with

the human subjects, or with the more sophisticated

correspondence-based methods.

In the present work, the employment of a front end

containing Gabor �lters at multiple scales and orienta-

tions [8] served to reduce the need for detailed pixel-

by-pixel correspondence, and allowed the viewspace

interpolation method [5] to be utilized to its full po-

tential. We conjecture that a further improvement

in the front-end measurement stage, combined with

a more advanced approach to interpolation (which

is currently done by inverse-distance weighting), will

close most of the remaining gap between the system's

3-way discrimination error (8%) and the error exhib-

ited by human subjects (3%).
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