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Cascade-Correlation as a Model of Representational

Redescription

J. K. Brook

Abstract

How does knowledge come to be manipulable and flexible, and transferable to other tasks?

These are issues which remain largely untackled in connectionist cognitive modelling.

The Representational Redescription Hypothesis (RRH) (Karmiloff-Smith, 1992b) presents

a framework for the emergence of abstract, higher-order knowledge, based on empirical work

from developmental psychology. The RRH claims that during learning/development initially-

implicit knowledge is rendered progressively more explicit via the reiterated action of the re-

description process, resulting in a hierarchy of increasingly explicit and accessible representa-

tions.

This thesis focuses on investigating in practice claims made for connectionism as a model

of redescription (e.g., Clark and Karmiloff-Smith (1993)) and on applying methods from recent
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4 Chapter 1. Introduction

1.3 Example domains



1.4. Contributions of this thesis 5

In terms of formats, the aim in all the models reported here has been to capture the pro-

gression from level I to level E1 — the modelling of accessibility to consciousness or verbal

expression was considered to be outside the scope of this project. The models are also designed

to capture the overall dynamics of the behavioural progressions in each domain.

1.4 Contributions of this thesis

This thesis presents the first study dedicated to investigating the claims that connectionist archi-

tectures can provide models for the RRH in the context of particular domains discussed as ev-



Chapter 2

The Representational Redescription Hypothesis

2.1 Introduction: the Representational Redescriptional Hypothesis

The Representational Redescription Hypothesis (RRH) (Karmiloff-Smith, 1986, 1992b) is a set

of related claims about qualitative behavioural change during development, child learning and

also adult learning in some cases. It is concerned with the progression from competent perfor-

mance of a skill (simply, knowing how to perform a task, such as balancing objects on a fulcrum

or producing mature usage of personal pronouns), to the ability to reflect upon, discuss and

manipulate that knowledge.

2.1.1 Implicit and explicit representations

Representations, in the terms of the RRH, are considered to be that which sustains behaviour



2.2. The RR Model 7
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externally, error-driven

learning towards

behavioural mastery

I format — implicit-level representation

externally, error-driven

learning

E1 format — first explicit level

E2 format — data available to conscious access

E3 format — data available to verbal report

Phase 1

Phase 2

Phase 3

Figure 2.1: The Representational Redescription Model

1993). The hypothesis also has it that in this phase new knowl
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In summary, representational redescription results in the existence in the mind of a set of

multiple encodings of similar knowledge at different levels of explicitness. That these encodings

form a conservative hierarchy is supported by the evidence presented by Karmiloff-Smith (1992b)

that innate constraints as well as the theories-in-action resulting from explicitation are reflected

in the structure of subsequent conscious explanations. Re-representations also form a hierarchy

according to their accessibility beyond their original context.

2.3 The RRH in Context

The following sections put the RRH in context by comparing it to other theories of represen-

tational change and development, and by trying to establish its position on the key issue of

representation.

2.3.1 The Position of the RRH
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Karmiloff-Smith (1994, p. 738) responds that the RRH has never denied that literacy training

during development affects brain configuration. She disput
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2.4. The Scope of the RRH 17

hypothesis can be used to account for representational change in adult learning — albeit only in

certain domains, specifically those (unlike language in particular) in which knowledge has not

become encapsulated through the process of progressive modularisation, which is assumed to

accompany redescription. I consider each of these in turn.

Infancy

As Karmiloff-Smith acknowledges, the RRH stems from work on subjects in middle childhood

and initially made no attempt to take infancy results into account. Karmiloff-Smith (1992b)

however, cites the volume of recent work on infancy as a primary motivation for including it

in discussion of the RRH. According to Karmiloff-Smith, the main consequences of this new

attempt to integrate infancy are to be seen in the epistemological framework, which this work

tries to establish, of a reconciliation between nativism and constructivism, and more specifically

in the highlighting of domain-specific constraints on development.

Despite the new prominence given to domain-specific (and usually innate) constraints in the

presentation of the RRH in Karmiloff-Smith (1992b), it is also claimed that ‘[a]s a model of

representational change, it would stand unaltered even if it turned out that there were no in-

nate predispositions or domain-specific constraints on development’ (p. 165). Karmiloff-Smith’s

primary interest in infancy in the context of the RRH is the representational status of infant

knowledge. It is claimed that, in the framework of the RRH, it would probably be inconsistent

to regard this knowledge as a ‘theory’ as, for instance, Spelke does, since the hypothesis requires

that knowledge be represented in at least E1 format before it has this status. Infant behaviours

on the other hand often seem to require no more than representation in I-level format. Specifi-

cally, Karmiloff-Smith prefers to characterise infant knowledge as procedurally represented (see

Rutkowska (1993)), in the sense that, while not seeking to deny that infant knowledge is both

rich and coherently organised, she also contends that it is ‘first used by the infant to respond

appropriately to external stimuli’ (Karmiloff-Smith (1992b), p. 78). This gives it a procedural

representational status and suggests its integration into the RR model at the I level.

In terms of the RR model, Rutkowska concurs with this, in that she does not consider the

conscious explicit formats (E2 and E3) to have particular relevance to an account of infancy, be-

lieving instead that ‘[o]verall, the three-phase model
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behavioural components in a supporting environment.

Other issues also remain to be addressed. For instance what p
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(Karmiloff-Smith, 1992b, p. 148)
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2.6. Domain-specific differences and the RR model 21

Mandler also has it that some detailed information is lost through perceptual analysis, as in

the RR process, and that it is based on an innately specified analytical mechanism, which may
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2.6.2 Conservation of earlier representations and procedures

Karmiloff-Smith stresses the fact that redescription is not a drive for economy (Karmiloff-Smith,

1992b, p. 23), rejecting analogies with data compression or garbage collection2 — representa-

tions are, rather, conservative and hierarchical.

Part of the evidence for this is provided by the ability to elicit an earlier (and more successful)

strategy from children in the block balancing task. The RRH has it that the level-I procedures

(here balancing blocks using proprioceptive feedback) are preserved for use in efficient produc-

tion.

But is this always the case and does it apply to representations at the higher, explicit levels?

It would seem rather odd to categorise the presence or absence of an effect which is proposed as

central to RR as a domain-specific difference.

For instance, in the domain of lexical morphology, it does not seem to be the case that the

earlier unifunctional homonyms are preserved as such, although the phonological procedures to

produce the words may be. The idea of a change in status here seems to imply that these are reap-

propriated more radically. It would be interesting to see whether an experimental manipulation

exists which would provoke a return to the earlier stage in older children or adults.

From the evidence surveyed in Karmiloff-Smith (1992b) for instance, it is also difficult to

see that aspects of E1 or E2 representations are preserved in the same way in the redescribed

E3 format. In the block-balancing task, the I-level theory in action is reflected in subsequent

representations. If this effect were observed across a number of domains it might violate the

idea that RR is conservative and hierarchical at all levels.

2.6.3 Extent of redescription

As Karmiloff-Smith acknowledges, redescription need not reach level E2/3. Karmiloff-Smith

(1979b, p. 97) also reports a case in which the behavioural symptoms of the three phases are

observed but without verbal or conscious access having been achieved. Karmiloff-Smith (1994)

acknowledges Scholnick (1994)’s observation that the RR model lacks a principled way of dis-

criminating between domains which do or do not become modularised. Karmiloff-Smith sug-

gests that these differences may be due to competition for computational resources.

2.7 Other responses to the RRH

This section surveys general responses to the RRH itself. Responses to implementational pro-

posals made by Karmiloff-Smith and her collaborators (see Clark and Karmiloff-Smith (1993),

Karmiloff-Smith (1992b, 1992c)) are discussed in chapter 3 below.

2.7.1 Form of the RR model

Issues raised in this area can be divided into two main categories. Commentators who lack

a basic sympathy with the idea of representational format which the RRH puts forward have

tended to direct their criticisms towards the nature of formats in the RRH, while others focus

more on issues affecting the structure of the model at a more macroscopic level, such as the

number and sequencing of formats.

Number of representational formats

Carassa and Tirassa (1994) put forward the general concern that proposing many represen-

tational formats entails also proposing a large amount of detecting and decoding machinery.

Goldin-Meadow and Alibali (1994) provide experimental support for Karmiloff-Smith’s four-

format story. Evidence for representations at Karmiloff-Smith’s level E2 comes from work in

which conscious awareness is revealed through gesture before verbal access has been gained.

2
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Many levels vs. simple implicit–explicit distinction

de Gelder (1994) uses evidence from the domain of language to argue that implicit and explicit

systems can dissociate. In Donald’s evolutionary account, (Donald, 1994), the two paths which

he claims have evolved for access to implicit memory seem to take knowledge directly from I to

(either or both of the) E2 and E3 formats, with E1 having a role perhaps only as a phylogenetic

intermediary in the development of fully explicit representations in humans.

Sequencing of representational formats

de Gelder and Carassa and Tirassa are worried about the kind of ‘temporal logic’ assumed to

link implicit to explicit representations in the RRH. Carassa and Tirassa (1994) make the point

that the fact that procedures are learnt first need not mean that initial knowledge is procedurally

represented, and that some knowledge starts off in declarative form, a point which Karmiloff-

Smith (1992b) acknowledges.

Goldin-Meadow and Alibali (1994) claim that studies of gesture suggest that accessibility

(and indeed redescription) may require not mastery as the RRH proposes, but merely stability.

According to the account of the conditions under which the RR model might be refuted as set

out by Karmiloff-Smith (1992b) (pp. 23–25), this has implications for the validity of the model.

Peterson (1993) examines and rejects the RRH as a potential theory of general re-representation,

explicitly avoiding discussion of its status as a theory of cognitive development (p. 3). In partic-

ular he is concerned with the kind of declarative–declarative transformations of problem formu-

lations that characterise conscious adult problem solving. He argues that in the examples given,

re-representations of the problem domain lead not to ‘more succinct statements about a domain’

(p. 3) as the RRH might suggest but to improvements in procedural performance. I would argue

that there is nothing in the RRH to suggest that redescription cannot result in improvements in

performance; it is simply that the need to make such improvements does not provoke redescrip-

tion. Also, Karmiloff-Smith claims that explicit problem transformation, for instance using

analogy, is facilitated by the products of previous redescription, and involves manipulations on

declarative representations, just as Peterson suggests.

Sequencing of accessibility

Scholnick (1994) considers that the processes which must underlie the initial implicit–explicit

transition differ radically from those which transform the resulting explicit representations into

verbalisable form.

2.7.2 Nature of representational formats

Campbell (1994), Rutkowska (1994b) and Vinter and Perruchet (1994) are all unhappy about the

epistemological status of representational format in the RRH. For Vinter and Perruchet (1994),

even initial mastery may well have to be underlain by explicit knowledge, since there is evidence

to suggest that implicit knowledge may not contain embedded
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game called number scrabble as a game of noughts and crosses over a magic square, and the Ro-

man and Arabic numeral systems are presented as examples and Peterson makes the following

analysis of the applicability of his list of characteristics. Although he is uncertain as to whether

such redescriptions can be termed abstractions, his criticisms focus on the nature of the trans-

formations involved. In number scrabble, he argues, the transformation is not from procedural

to declarative, but rather from procedural to procedural, the virtues of the re-representation be-
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complementary nature of these approaches and defends soft-core approaches such as the RRH

on the basis that they avoid premature commitment to artificial or terminological separations

between processes which are in fact fluid or interactive. In her view soft-core approaches thus

support a better general conception of processes.

Motivations for the computational modelling of development

General motivations for constructing computational models for developmental phenomena in-

clude the fact that, as Klahr (1995) argues, irrespective of paradigm, computational models (in

particular, so-called process models) offer theorists a chance to examine their hypotheses under

dynamic conditions. This process may then expose weaknesses which were not apparent from

the original static formulations of a particular theory.

Rutkowska (1993, pp. 3–6) however is skeptical of the intrinsic value of ad hoc translations

of developmental principles into programs in traditional AI languages such as LISP and Prolog,

and cautions modellers to focus instead on models of proven worth which ‘illustrate robust ideas

from [cognitive science] about the way computation might be organized’ (p. 4).

Exploring constraints on redescription
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necessary to the RR model, it was argued that in the implementational suggestions given by

Karmiloff-Smith (1992b), the suggestions of Rutkowska (1993, 1994b), and the reformulation of

the RRH along connectionist lines by Clark (1993a), certain aspects of the dynamical systems

perspective might be reconciled with the RRH, in particular the notion of different representa-

tional format as gradual increments in multiple usability.

The predictive scope, although touching on infancy and adulthood, was still found to centre

on middle-childhood, while suggestions that redescriptive processes occur in non-human ani-

mals are still very much open to debate.

Criticisms of the hypothesis centre on the form of the RR model, in particular its discontinu-

ous and conceptual representational formats, and the strain evident in the attempt to apply it to

infancy. The RR process itself is less critically received (perhaps partially because it is described

in much less detail).

Motivations for constructing a computational model of the RRH include providing, and

testing dynamically, candidate mechanisms for the RR process or model, and thereby also in-

vestigating constraints on the model, such as the timing of redescription and domain-specific

differences.



Chapter 3

Connectionism and Developmental Modelling

3.1 Introduction

This chapter surveys computational models of development, comparing connectionist models,

the focus, with symbolic and dynamical systems approaches. The second half of the chapter

reviews requirements and previous suggestions for a computational model of the RRH, dis-

cussing related connectionist issues, in particular systematicity, explicitness and task transfer,

which such an enterprise raises. Practical investigations into modelling the RRH using resource-

phased connectionist models are reported in chapters 5–7.

3.2 Computational models of development

As discussed in the closing sections of chapter 2, computational modelling has been advocated

for developmental study for several central reasons. Klahr (1995) notes two clarifying roles.

Firstly, a given developmental theory may be ‘sufficiently c
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Production system models of developmental change include Langley’s discriminant learning

model of stage-transitions on the balance-scale task (Langley, 1987), and Wallace et al.’s self-

modifying production model of children’s number sense (Wallace et al., 1987).

Some workers in this field (e.g., Anderson (1983), Newell (1988)) also make strong claims

that production systems correspond to the cognitive architecture (defined by Neches et al. (1987,

p. 14) as ‘the invariant features of the human information processing system’) underlying human

cognition.

3.2.2 Dynamical Models

Several models intended to capture Piagetian stage phenomena have also been constructed in dy-

namical systems terms. The models proposed by Preece (1980) and van der Maas and Molenaar

(1992) are based on the notion that qualitative changes in catastrophe theory provide a basis

for reasoning about qualitative changes during development, in the absence of any discussion of

representation, but in a more abstract manner than the dynamical systems framework of Thelen

and Smith (1994) discussed in Chapter 2.

3.2.3 Connectionist models

Although connectionist models are discussed in more detail in sections 3.3–3.6, it is worth sur-

veying here the qualities which, it is argued, make them appropriate for modelling development.

Karmiloff-Smith (1992a, p. 4) emphasises the qualities of connectionist approaches which

have particular relevance to her work; specifically their potential as a means to analyse implicit

representations, since connectionist models do not rely on the explicit codings often underly-

ing performance in traditional cognitive models. Like Mareschal and Shultz (1993), she also

points to the gradualism and non-linearity of connectionist models and the way this changes

ideas about stage transitions, as well as allowing systems to avoid premature commitment to

hypotheses. As discussed in section 3.4.1, Karmiloff-Smith also sees networks as implementing

a kind of progressive modularisation in the form of increasing informational encapsulation.

Such models also take advantage of some of the inherent qualities of connectionism consid-

ered relevant to models of cognition in general. For instance the fact that networks simultane-

ously learn by rote and extract graded generalisations and that the representations they develop

are graded and distributed, exhibiting graceful degradation and saturation.

3.2.4 Discussion

Comparing production systems with connectionist models

Cognitive architecture As Klahr (1995) points out, implicit in production systems models is a

strong claim about cognitive architecture, while connectionist models, according to Klahr ‘are

less of an architecture than a set of shared assumptions’ Klahr (1995, p. 363). In comparing

the two approaches, he goes on to argue that properties such as parallelism and distribution of

representations, usually claimed as advantages for connectionism, are also inherent or possible

in production systems.

Capturing change Boden (1988) in reviewing computationally inspired answers to the question

of the difference in abruptness supposed to exist between learning and developmental change,

notes that adding a single rule to a production system model can lead to a qualitative change

in behaviour ‘comparable to what Piaget would term a stage progression’ (p. 211). It should

perhaps be remembered here that productions vary greatly in the granularity and abstraction

of knowledge they embody. Thus a single production rule may well capture a crucial strategy

change in itself, in a way in which a connectionist training pass in particular typically does not,

except perhaps in special cases where learning is one-shot or semantically transparent (Clark,

1989). However, Klahr (1995) argues against the intuition that a change in the rule-base of

a production system must always be viewed as a qualitative change at a much higher level of
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well to new forms and that these initial 20 verbs are essentially memorized by the

network by a process we can refer to as rote learning.

(Plunkett & Sinha, 1992, p. 227)

and concluding that

later in training, the network’s representations become systematized (as evidenced

by the performance on novel verbs) : : : the network continues to map irregular verbs

correctly even though the mapping of novel verbs is systematic.

These results support the important claim that learning and generalisation can be realised within

a single mechanism.

It could be argued however that a network implementing a rule-plus-exceptions scheme

should no longer be regarded as utilising a single mechanism. Indeed in some cases, the so-

lution formed by a network may be a very close approximation to an explicit mechanism in
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� the model should treat its own representations as objects of manipulation

� do so independently of prompting by continued training inputs

� retain copies of the original networks

� form new structured representations of its own knowledge wh
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of the input data), while explicit representations reflect simpler mappings, which are explicit

in the sense that they manifest themselves in the statistics. Explicitation works to transform

implicit into explicit, in the sense that it brings non-statistical regularities within the grasp of

(necessarily) statistical learners.

The network architecture is hierarchical and consists of multiple layers. These alternate
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simulating some kinds of representational change during development, and the related idea of

scaffolding a representational trajectory was introduced.

The three characteristics of RR outlined in section 2.1: accessibility, explicitness, and sources

of knowledge were discussed in a connectionist context. There is a sense in that, by demanding

these capabilities, representational redescription can be viewed as a challenge to connectionism,

requiring a developmental progression from associative to systematic and transferable knowl-

edge. It was found that explicitness could be usefully recast for connectionism in terms of a

continuum of system-relative levels of accessibility. The controversial related issue of system-

aticity could be usefully viewed as a product of scaffolded development, rather than a prerequi-

site in the cognitive architecture as Fodor and Pylyshyn (1988) insist. The role of domain-general

constraints and (with certain limitations) domain-specific constraints was also considered some-

thing which might be explored within a connectionist model.

It was also argued that connectionist models were able to address issues in the RRH con-

cerning the timing of mastery, its relationship to redescription and the role of continued on-line

processing and residual error.

Implementational suggestions for the RRH were reviewed. These were found predominantly

to involve connectionism, (presumably following the lead set by Karmiloff-Smith (1992b) and

Clark and Karmiloff-Smith (1993)). Although the qualitative differences between formats (as

well as the use of computer-metaphoric language) in the RR model might suggest the use of

connectionist-symbolic hybrids, these were criticised on the grounds that they move away from

the natural advantages of connectionism, such as direct generalisation, and that they require a

great deal of hand-intervention, seeming to tell us little about how qualitatively different repre-

sentational formats can emerge from a connectionist system.

Although most proposals for RR models involve augmented or weak hybrid (mixed-strategy

or modular) systems, Plunkett (1993) argues that standard schemes such as backpropagation

already embody systematic representations which are explicit in the restricted sense presented

in this chapter. The proposal that associative and tensor-product networks could be related is

intriguing but is not a process model of redescription as it stands.

Examples of implementations of redescriptive models are united in their use of competitive

learning to extract features in conjunction with another process, either of error-driven learning

(Greco & Cangelosi, 1996b) or a non-connectionist algorith
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change, these can be cached, thus avoiding unnecessary calculations.

� Cascade-correlation uses freezing of existing structure and the restriction of each recruit-

ment to a single unit. This is an attempt to combat what Fahlman and Lebiere (1990) call

the moving target problem. Under these restrictions, the network only sees, a relatively

fixed aspect of the problem, and is thus able to focus on it.

Incremental learning

As Fahlman and Lebiere (1990) note, cascade-correlation is well suited to incremental learning,

i.e., in their terms, ‘when information is added to an already-trained net.’ (Fahlman & Lebiere,

1990, p. 11) (its suitability for capturing the related idea of incremental learning associated with

developmental modelling is discussed in section 4.3.1). One reason for this is that the freezing

of earlier-generated structure means that any feature detectors it embodies, once formed, are

never cannibalized. Of course the extent to which these frozen sets of incoming connections

are actively used by the network as feature-detectors depends on the strength of the weights

formed between the hidden and output units. For instance a change in training set can cause

these to change such that the effect of some of the previous input-side structure is diminished or

lost. However the input-side weights have a strong mediating effect on the connections trained

through error-driven learning, and Fahlman and Lebiere note that if the training set is changed,

the output-side weights ‘are quickly restored if we return to the original problem’ (Fahlman &

Lebiere, 1990, p. 11).

The constructive scheme used in cascade-correlation is also reminiscent of models and ac-

counts inspired directly by biological development. For instance, Linsker’s influential model of

the development of the visual system made use of a scheme in which (self-organising) layers were

added incrementally until the required higher-order feature-detectors had been formed. Quartz

and Sejnowski (forthcoming) cite cascade-correlation as an example of a scheme which accords
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one which has been used to model development (although it has not previously been applied to

the RRH). A more recent extension to cascade-correlation — FlexNet — provides a framework

for varying certain aspects of the constructive scheme in cascade-correlation and would be an

interesting tool for extending the work presented in chapters 5 and 6.

4.3 The promise of cascade-correlation as a model of RR

The relevance of using cascade-correlation in the construc
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the article used by the experimenter (because, in the terms of the RR model, they now have

explicit conscious access to the linguistic subsystem underlying their performance).

The decline in performance in the middle group is thought by Karmiloff-Smith to be due to
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corresponding to the fact that there are 15 possible objects, 4 of which are used in any given

context during the experiment.

A pilot study using an array containing all fifteen different input object-types had shown

that there was a large overhead due to the network’s having to learn the associations between
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Article Ambiguity Array Question Response

objects

definite unambiguous ((0,1),(M,1),(1,M),(1,0)) (0,0,0,1) room with 1 (left)

definite ambiguous ((1,M),(0,1),(M,1),(1,0)) (0,0,1,0) room with 1 (right)

indefinite ambiguous ((M,1),(1,0),(1,M),(0,1)) (1,0,0,0) room with M (left)

Figure 5.3: The three test situations in Karmiloff-Smith (1979a)

Training in this way with the intended function made explicit in every case was intended as

pretraining corresponding in a broad sense to the previous linguistic experience of children in

this microdomain. Karmiloff-Smith (1979b) notes that in daily discourse ‘such ambiguity rarely

exists due to contextual clues’ (p. 95) and the explicit functions were intended to indicate such

context.

Using a method similar to that used by Plunkett and Marchman (1993), weight matrices were

saved after each phase of output-side learning,3 giving one matrix for each hidden-unit configu-

ration of the network, and tested on a data set not used in training to investigate the progressive

systematicity of the representations formed within the network as well as generalisation.

5.2.3 Test data

In order to test the generalisation of the learning of the different semantics for the indefinite
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or simple-recurrent networks) to hidden-unit activations provides, at best, only a partial picture

of the solution formed in the network. The main alternative method of analysis which has

been proposed for cascade-correlation is contribution analysis (Shultz & Elman, 1994; Shultz

& Oshima-Takane, 1994). This can provide an analogue to PCA for cross-connected networks

such as cascade-correlation. However as Shultz and Elman (1994) note, it is unsuitable for use

with binary input values such as those used here, which were chosen since the use of multi-valued

input units was considered to be too representationally biased, as well as making weight-values

difficult to interpret directly.

Training-set biases

The frequency with which children hear utterances using each form–function pair was not

known. 6 Datasets containing differing proportions of exemplars were thus generated according

to several kinds of scheme. Tables 5.1(a), 5.1(b), and 5.1(c) give the different configurations ac-

cording to which the training sets were generated. Configuration A simply balanced the propor-

tions of indefinite and definite article exemplars, balancing proportions of each sense and then

situation (or ambiguity) within these. Configuration B had equal proportions of definite, in-

definite non-specific and indefinite specific exemplars, again with situations equally represented

within these. Configuration C was mainly intended to provide a bias towards the definite article,

in the interests of investigating whether this would address the surprisingly poor performance

on this category which had been observed in pilot studies.

5.3 Results

The main set of experiments used the input representation given in section 5.2.1. In order for the

network to learn the correspondences between the two banks of units representing object-type

information in the playroom arrays. Pilot studies had shown that several thousand exemplars

were needed and the training sets in this section each consisted of 2000 unique exemplars.

5.3.1 Basic performance

The basic performance of cascade-correlation on the three dataset configurations is summarised

in table 5.2. These results show that using input data restricted to four object-types the network

was able to learn the basic task including that of matching object identities between the array

and question-object banks.

5.3.2 Misclassifications

As noted above, misclassifications on different categories provide the main (behavioural) means

of diagnosing qualitative change. The proportions of misclassified exemplars from the training

and test sets were recorded each time a hidden unit was recruited.

Misclassifications on training set
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Definite article 50% ambiguous 25%

unambiguous 25%

Indefinite article 50% non-specific ambiguous 25%

specific unambiguous 12.5%

ambiguous 12.5%
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Input Epochs Output Epochs Average Hiddens Average Epochs Min/Max

150
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creased gradually at first, and more rapidly towards the end of training. The following function

was found to have this general profile:

f(h) =

�

1; if f(h)6 0

(1� eh+offset1
+offset2)=scaling otherwise

where offset1, offset2 and scaling were values needed to bring the appropriate part of the underly-

ing graph into a suitable range for pool-size values. After a hand-search these values were taken

to be 6, 20000 and 400, which compensates for the fact that the
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Object Article Function Addressee

(1,M) indefinite specific 7�! boy

(M,1) indefinite specific 7�! girl

(M,1) indefinite non-specific 7�! boy

(1,M) indefinite non-specific 7�! girl

(1,0) indefinite specific 7�! boy

(0,1) indefinite specific 7�! girl

(M,1) definite definite 7�! girl

(1,M) definite definite 7�! boy

(1,0) definite definite 7�! boy

(0,1) definite definite 7�! girl

Table 5.3: Complete mapping for playroom experiment using a single object type

O1

B 0 1 M 0 1 M A ns def sp

(a) Before recruiting any hiddens

H1

O1

B 0 1 M 0 1 M A ns def sp H1

(b) After recruiting one hidden

Figure 5.11: Hinton diagrams for network trained on single object-type task with input- and

output-epoch limits of 300 and output patience 200

progression here involves a partial solution covering all but the difficult indefinite non-specific
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Network performance compared with experimental data

The aim of these experiments was to capture the U-shaped behavioural pattern on the task

of learning to map articles to functions in comprehension of



5.5. Discussion 79



80 Chapter 5. Plurifunctionality and Cascade-Correlation

most of the networks discussed above, as the graphs of generalisation performance (figure 5.5)

indicate.

Karmiloff-Smith (1992b) does not discuss whether knowledge of this task becomes accessible

to processes from other domains, and thus it not possible to design experiments to assess this.

Whether the knowledge reaches level E3 in terms of verbal exp
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In terms of the RR process, if we are to claim that individual unit-recruitments correspond

even to micro-redescriptions then it must be possible to relate the strong mediation of the in-

coming signal to the candidate hiddens by the previous recruits to the idea in the RRH of the

appropriation of the products of previous learning. The ideas discussed in Clark and Thornton

(1993) provide a bridge between these two ideas of hierarchical knowledge representations via

the notion of a series of feature detectors each of which recodes its incoming signal in terms of

higher-order features.

The strength of hidden–hidden weights showed that previously recruited hidden structure

had a mediating influence on new structure, while the strengt



Chapter 6

Cascade correlation as a model of RR in

sequence-learning domains

6.1 Introduction

This chapter reports results of two sets of experiments performed using the recurrent cascade-

correlation architecture (Fahlman, 1991) in modelling sequence learning. These experiments

explore a range of RR scenarios which complements the work on the article system presented

in Chapter 5 in several ways. The addition of recurrence constitutes a difference in domain-

general constraints on the network in the terms of Karmiloff-Smith (1992c, 1992a), although the

incremental learning mechanism remains unaltered providing a basis for comparison between

the two models. The use of the recurrent version of cascade-correlation is motivated by the

focus on the learning of temporal sequences (see section 6.1.1).

The first set of experiments aims to investigate the ways in which redescription manifests

itself in the increasing individuation and independence of the sequential context of sequence

elements during counting.

An important distinction between the number domain and the article-function task is that

Karmiloff-Smith (1992b) provides information on knowledge transfer within the number do-

main. It is thus possible to use task transfer between networks as a criterion for redescription

in modelling this domain. The second set of experiments uses learning and structural transfer

between regular grammars as a control for the influence of perceptual similarity on transfer in

the counting domain.

6.1.1 Sequence learning and the RRH

Karmiloff-Smith (1990) identifies a subset of redescriptive effects which are observed across a

range of domains involving sequence learning, e.g., learning to count, grasping musical struc-

ture, producing spoken language (Karmiloff-Smith, 1992b, p. 162), seriation (p. 163), and the

production of written notations, as well as the learning of sequences of actions in general.

The sequential aspect to these tasks or domains is assumed to act as an initial constraint

on the learning. For instance, in counting, Karmiloff-Smith (1992b) notes two properties which

may act as potentiating constraints on learning: sense of one-to-one correspondence and sense

of ordering. As in non-sequential domains, the RRH predicts that these constraints survive

in some form in the mature version of the acquired knowledge. This is seen in the counting

domain for these two constraints, for example, in the abstract idea of ordering and in relational

operators.

Moving beyond innate constraints, the RRH posits that, over the course of learning, the

underlying sequential representations which begin as procedural, uninterruptable wholes subse-

quently undergo a process of redescription. In these domains, the increased accessibility of the
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6.2. RCC as a model for the RR account of sequence learning 85

Counting

Several connectionist investigations of counting exist. Broadbent, Church, Meck, and Rakitin

(1993) aim to capture particular quantitative as well as qualitative psychological effects. Wiles

and Elman (1995) investigate the dynamics of the activation landscape of an abstract task re-

quiring counting. In their study, a network was trained usin
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A B C

time input output input output input output

t0 � 1 � 1 � 1

t1 � 2 �
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Input Epochs Output Epochs Average Hiddens Average Epochs

200 200 3.7 (3/5)
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Target: configuration A

332.0 3.2 18.0 (200/100) 0.0 0.90 1.0

18.0 (100/100) 0.0 0.90 1.0

18.0 (50/50) 0.0 0.90 1.0

18.0 (20/20) 0.0 0.90 1.0

Target: configuration B

407.0 4.1 408.33 (200/100) 0.67 0.00 0.72

412.00 (100/100) 0.99 0.02 0.61

364.33 (50/50) 0.99 0.06 0.61

198.67 (20/20) 1.33 0.34 0.51

Target: configuration C

291.0 3.0 23.00 (200/100) 0.0 0.85 1.0

23.00 (100/100) 0.0 0.85 1.0

23.00 (50/50) 0.0 0.85 1.0

46.67 (20/20) 1.0 0.72 0.5

Table 6.4: Extent of benefit of reverse transfer (cardinalit
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Input Epochs Output Epochs Average Hiddens Average Epochs

200 100 7.3 (7/8) 665 (644/688)

100 100 7.3 (7/8) 708 (657/752)

50 50 6.0 (5/8) 481 (410/616)

20 20 9.3 (8/11) 386 (328/462)

(a) Training set containing all 20 exemplars of > relations on digits in the set f1 : : :

5g

Input Epochs Output Epochs Average Hiddens Average Epochs

200 100 10.0 (8/13) 1040 (875/1275)

100 100 12.0 (9/16) 994 (836/1177)

50 50 10.2 (6/17) 821 (488/1269)

20 20 15.0 (13/18) 614 (543/722)

(b) Training set of 16 relations

Table 6.5: Basic performance on the task of learning >-relations on different training sets

of which were positive cases, half of which were negative. Each half of the test set contained one

example of each of the possible inter-number differences in order to control for these differences

as indicators of the structure of the domain.

Figure 6.9 shows the training and generalisation error over the course of training. The graph

shows that generalisation error is consistently higher than training-set error as would be ex-

pected, and also that it improves more quickly as the network recruits more hidden units, thus

fitting it more closely to the particular exemplars in that set. However the graph also shows that

it also takes comparable values throughout and eventually reaches zero which suggests that the
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Source: configuration A

481.0 6.0 677.17 (200/100) 5.34 -0.17 0.06

1461.67 (100/100) 5.67 -0.50 0.03

597.50 (50/50) 5.17 -0.11 0.07

880.67 (20/20) 15.17 -0.29 -0.43

Source: configuration B

481.0 6.0 873.67 (200/100) 5.00 -0.29 0.09

799.84 (100/100) 4.67 -0.25 0.13

606.17 (50/50) 4.34 -0.12 0.16

552.17 (20/20) 9.17 -0.07 -0.02

Source: configuration C

481.0 6.0 876.50 (200/100) 5.50 -0.29 0.04

852.83 (100/100) 5.84 -0.28 0.01

655.34 (50/50) 5.33 -0.15 0.06

718.00 (20/20) 11.83 -0.20 -0.33

Table 6.7: Transfer from counting with explicitly marked targets to >-relation

the cardinality of individual sets. The following transfer experiments were therefore designed

to investigate whether prior training on counting or cardinality tasks facilitated the learning of

the comparison task, and thus to what extent the representations of order and quantity formed

during the original training were accessible to further learning on related concepts.

For this experiment, networks with the same extended input and output configuration as the

relation networks were first trained on the counting with exp
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τ
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Epochs from Hidden units Epochs after Hidden units
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count sequence was not interruptable in that it would be impossible to ask the network to count

from any point but the beginning, and this was partly due to the fact that stimuli were identical

and presented temporally. There was thus no direct way to provoke the output ‘3’, say, without

presenting three counting stimuli.

From counting to cardinality (counting without explicit markers) The RRH predicts that aware-

ness of the cardinality of a set arises from redescription of the previously mastered counting pro-

cedure, specifically through the increased accessibility of the final element of the count sequence.

In a network model we would thus expect positive transfer from counting with to counting with-

out explicitly marked intermediate targets. As tables 6.10 and 6.3 show, transfer was positive for

all source configurations. The most positive was configuration B, in which final the count was

repeated, followed by configuration A, which required no response apart from the basic count

sequence. This results lend support to the suggestion above that the required repetition of the

final count tag requires some information about cardinality to be deployed. Fuson (1988) also

identifies repetition of the last count word as a stage in the progression from rote counting to

awareness of cardinality. Although it is the external emphasis on the last token which makes

the cardinal number in configuration B more salient and thus a better source for transfer to the

cardinal task, it should also be noted that transfer was positive in the other cases also.

Comparisons between count sequences Performance at this task was perhaps surprisingly good,

considering that a locally (limited-memory) recurrent architecture was used and the network

needed to deal with sequences which were over twice as long as those in the previous two ex-

periments. In part this is accounted for by the fact that cascade-correlation is able to recruit an

amount of hidden structure proportional to the number of digits involved (see table 6.6).

Since this task involves relationships between cardinal values which may be as much as four

steps apart, it would seem that access to more than just the representation of the final elements is

required in order to succeed at this task. As table 6.6 shows, the network did not learn the task

simply by recruiting enough hidden units to represent all the possible relation-pairs explicitly,

although the number of hidden units required did increase with the maximum digit used.

The RRH predicts that the accessibility of sequence elements proceeds ends-inwards. Thus

in this case the development of representations underlying cardinality would precede that from

comparisons, since cardinality involves only the final element. In the network model we might

thus expect transfer from counting and cardinality to comparisons to be positive, and for the

latter to be more positive since awareness of cardinalities would seem to be necessary for success

on the comparative task. However, as figure 6.10 shows, transfer between cardinality networks

and comparative networks is actually the least successful of the transfers, while transfer from

counting to cardinality is positive in terms of structure (measure τh), but negative in terms of

training time (measure τe).

As suggested in the analysis of section 6.6 the negativity of the cardinal–comparative trans-

fer was due to the fact that explicit counting was a subtask of the comparative task and previous

training on the cardinality task did not particularly facilitate this. This result also has impli-

cations for the accessibility of the representation of cardinality to the comparison task since,

although the latter must learn the explicit counting part of that task, it should also be able to

appropriate the representation of cardinality from the cardinal network to some extent, rather

than being hindered by it. The result might also be taken to imply that the mechanism used by

the comparative network represents cardinality in a way which is not divorced from the count

sequence as it is in the cardinality task.

The positivity of transfers in the reverse direction also points to the similarity between the

counting and comparative tasks, as transfers from comparative networks to both counting and

cardinal networks are positive. These results also imply that some of the staging of learning

in the comparative task is due to the cascade-correlation architecture alone. As the analysis

of the activation patterns showed, the network learned the counting and comparison subtasks

concurrently and its problem decomposition thus differs from that which was hand-engineered
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Figure 6.11: The finite-state machine accepting the Reber grammar

6.9.1 Structural transfer between isomorphic machines

This experiment was intended to assess the extent to which RCC forms representations which

are independent of particular perceptual inputs. The task requires the network to transfer the

ability to predict the next machine state using a particular
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Input Epochs Output Epochs Average Hiddens Average Epochs

400 400 3.0 (2/4) 415 (265/591)

200 200 4.4 (3/6) 471 (317/599)

200 100 4.4 (3/6) 471 (317/599)

100 100 4.8 (2/6) 427 (172/591)

50 50 3.8 (3/4) 335 (257/376)

20 20 13.0 (10/18) 273 (210/378)

10 10 14.4 (10/21) 304 (210/445)

Table 6.11: Basic performance on the Reber grammar

the scheme used in Chrisley and Holland (1994), in which an ag
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negative transfer in the input case is even more pronounced than for the structural measure.

These results are consistent with those obtained for SRN’s trained on the predictive version

of this task (Cleeremans, 1993; Jackson & Sharkey, 1995; Dienes et al., 1995) — new output

encodings are easily learnt simply by retraining the hidden–output weights, whereas new input

encodings require a new transition structure to be learnt from scratch by the recurrent input–

hidden part of the network.

The reason for this difference is made clear by considering a correspondence between net-

work resources and machine functions analogous to that made by Chrisley and Holland (1994)

for the SRN’s in their study. In terms of Moore machines, the h



110 Chapter 6. RCC and sequence learning

detrimental to learning on the comparisons task.

The reverse transfers from cardinality to counting and from comparisons to cardinality and

counting were perhaps surprising in that previous training on comparisons facilitated learning

of both counting and cardinality. This was thought to be due to the fact that the counting is a

major subtask of the comparison task. The staged learning inherent in the cascade-correlation

scheme evidently forms intermediate representations of the count in this task which are usable

during subsequent learning on a counting task alone.

Some concerns remained about the burden placed on innate constraints in the model, in

particular the fact that inputs were pre-segmented. Others
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Figure 7.1: Proportions of misclassifications on each class of exemplar for networks initialised

with either (the minimum) 3 hidden units or 6 hidden units.
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that in the empirical data in that misclassification rates on indefinite exemplars are consistently

higher than those on the definite article.

Skeletonisation based on random selection of hidden units In the interests of investigating

the effectiveness of the relevance measure as a means of selecting units for deletion, the above

experiments were repeated using random selection of units t
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Figure 7.2: Proportions of misclassifications on each class of exemplar for networks initialised

with either (the minimum) 3 hidden units or 6 hidden units and deleting hidden units randomly.
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H1

H2

O1

B 0 1 M 0 1 M A ns def sp

(a) Weights after unit-deletion and re-training

I

0 1 M 0 1 M A ns def sp

(b) Relevances after unit-deletion and re-training

Figure 7.5: Weight and relevance patterns for a network which had started to misclassify indef-

inite non-specific exemplars after retraining following the deletion of the hidden unit with the

lowest relevance value
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Figure 7.6: Cluster analysis of hidden-unit values after convergence on the ten-pattern data-set.

Key: (un)am = (un)ambiguous, ns = non-specific, sp = specific, (in)def = (in)definite

7.5 Statistical analysis

Unlike cascade-correlation, since skeletonisation is performed on backpropagation networks

which have a ‘flat’ hidden layer structure, it is possible to use statistical techniques such as prin-

cipal components analysis (PCA) and hierarchical cluster analysis (see Everitt and Dunn (1991)

for instance) to examine the internal representations formed.

7.5.1 Cluster analysis

Figures 7.6 and 7.7 show the results of applying cluster analysis to the values of the hidden units

after the network had converged on the ten-pattern data-set and after deletion of the unit with

the lowest relevance.

The groupings in figure 7.6 strongly suggest that (for eight of the ten examples) the task rep-

resentation formed in the network does not correspond to the conception of the task as being

classified primarily according to article and secondarily according to function. Rather there is a

basic division between exemplars with ambiguous and unambiguous arrays (i.e., cases in which

there is at least one object of a particular type in each playroom versus cases in which an object

of that type appears only in one playroom respectively), although even this is violated by the two
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Figure 7.7: Cluster analysis of hidden-unit values after convergence on the ten-pattern data-set

after deletion of unit with lowest relevance.
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indefinite unambiguous specific exemplars. It seems that the groupings formed in the network’s

representation depend primarily on the quantity of an object and which playroom it appears

in. It is interesting that the two indefinite non-specific ambiguous cases which necessitated the

extended incremental training schedule constitute an exception to this pattern in that they ap-

pear close together in the diagram. The structure of figure 7.7 provides further evidence that the

solutions found by error-driven learning centre around cues from the perceptual structure. This

analysis shows that after the deletion of the unit supporting correct performance on the excep-

tional cases, the structure of the task representation is simplified and now depends in a simple

manner on perceptual similarities.

7.6 Comparison with cascade-correlation

The difficulties encountered with training a backpropagation network to perform the playroom

task without object recognition prompted a re-evaluation of the solution formed by cascade-

correlation (see figure 5.11).

Examination of the pattern of weights formed by cascade-correlation suggested that per-

formance on the first phase, in which all but the problematic indefinite non-specific ambiguous

cases were correctly classified, was in fact underlain by a simple rule based on the pattern in

the array alone (the weights from the article and function inputs were comparatively low). The

role of the hidden unit was then to deal with the problematic cases, which constitute execep-

tions to the rule and for which article and function information must be attended to. Similar

patterns of weights were to be observed in figure 7.4(a) suggesting that the backpropagation /

skeletonisation scheme had developed a similar representation.

The pattern of repeated convergence followed by repeated failure without subsequent re-

covery over the course of skeletonisation is consistent with the effect of skeletonisation on the

‘rule-plus-exception’ example presented in Mozer and Smolensky (1989b, pp. 9–10). In this ex-

ample a network with two hidden units is trained on 15 patterns which conform to a rule and

a single exception. According to Mozer and Smolensky, the ‘logical first candidate’ for dele-

tion is the hidden unit which has learned to treat the exceptional case. Although this behaviour

is in keeping with the RRH in that it leads to greater generalisation with a possible loss in

performance, and supports Mozer and Smolensky’s claim that skeletonisation facilitates (exper-

imenter) interpretation of network representations in terms of rules, it seems that the relevance

measure here gives emphasis to essentially the same features as the statistical mechanisms of the

underlying error-driven learning. Thus, in this case at least, the claims for relevance as a means

of identifying non-statistical features of task structure seem somewhat weak.

7.7 Summary

This chapter has presented a small comparative study which examines the skeletonisation pro-

cedure applied to backpropagation networks as the basis for a model of representational re-

description. Due to the comparative power of backpropagation and cascade-correlation and the

lack of a version of skeletonisation adapted for recurrent networks the experiments focused on

the form of the playroom experiment (chapter 5) omitting the object-recognition component.

Two main incremental training schedules were investigated. The first was simply to use the

train–prune–re-train cycles used by Mozer and Smolensky (1989b). This was found to result in

one of two behavioural profiles — networks either reconverged after every deletion without ever

exhibiting a drop in performance, or else failed to converge after an initial run of successes and

continued to fail thereafter.

For the second set of experiments, the basic skeletonisation scheme was augmented with

two additional resource-phasing mechanisms — freezing of previously trained weight structure

and addition of new trainable hidden units. The results of this second set of experiments were

disappointing in that the addition of new structure did not facilitate a recovery in performance.
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In conclusion, these studies suggest that unit deletion alone does not provide as good a

fit to the experimental data as cascade-correlation, since although deletion was successful in

causing the drop in performance on some indefinite-article exemplars, the network was never

able to recover its performance on the exceptional indefinite non-specific ambiguous cases. Thus

deletion alone seems unable to capture the redescriptive process at every phase of the RR model.

As we saw above, the relevance measure may also not be as independent of statistical profiles as

a model of the RRH would require in cases where the frequencies of significant exceptions are

low.
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which omitted the object-recognition subtask, showed that the increase in representational ca-

pacity obtained through unit-recruitment was essential for correct performance on the indefinite

article case.

Variation of internal parameters controlling the size of the search space (candidate pool size)

and the duration of training in each phase (patience) was also investigated. It was found that

training runs in which a large initial patience value was reduced according to the profile in fig-

ure 5.10(a) were most likely to exhibit an error profile resembling that of the original experiment,

i.e., misclassification error on definite-article cases was consistently lower than that on indefinite

cases, and the latter exhibited relatively large fluctuations in error (albeit never as great as those

observed in children).
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(1989b), while the second augmented this with weight-freezing and the addition of new trainable

hidden-unit structure.

The results of these experiments were particularly disappointing. Although the relevance

measure was found to act selectively to preserve performance on the definite article cases, while

producing a drop in performance on the indefinite article, it was found that, even using the

augmented scheme, the network was not able to capture the subsequent increase in performance

characterising the later part of the U-shaped behavioural curve in this micro-domain.

8.2 Cascade-correlation as a model of representational redescription

8.2.1 Cascade-correlation and the RR model

This section surveys the correspondence between cascade-correlation and the formats and phases

of the RR model (as presented in section 2.2).

Innate constraints

Domain-general constraints As Karmiloff-Smith (1992a) argues, choice of connectionist archi-

tecture alone constitutes a basic kind of domain-general constraint. Thus the cascade architec-

ture, and in particular its initial limitedness, are considered to act as domain-general constraints,

as is the recurrent mechanism in the case of RCC.

Domain-specific constraints In the counting domain, the use of a discrete recurrent network

was taken to be equivalent to the constraints of one-to-one correspondence, and item- and order-

irrelevance. Parameter variation in the article-function experiments was also used to try to sim-

ulate the effects of early one-form–one-function constraints by controlling overfitting, with a

degree of success. However in designing the input data format for the playroom experiment, a

deliberate attempt was made not to bias the network towards forming a systematic representa-

tion of the articles and their functions.

The implicit level

As discussed in chapter 3, there is relative consensus among most commentators on the RRH
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8.2.2 Roles of elements of cascade-correlation in modelling redescription

As we saw in chapter 4, there are general structural, procedural and behavioural similarities be-

tween cascade-correlation and both the RR process and model. The algorithm’s hierarchical and

conservative structure and its alternation of learning methods were the features given particular

emphasis. This section surveys which of the features of cascade-correlation contribute most to

its success at capturing RR. In the light of the experiments presented in chapters 5 and 6, the fol-

lowing conclusions can be drawn about the contribution of these aspects to cascade-correlation

as a model of redescription, as well as other factors such as parameter manipulation.

Hierarchical structure

As expected, the hierarchical structure of the network architecture was found to give rise to

effects on sequences similar to those required by the RRH (chapter 6). In particular, examination

of weight-patterns showed that the features attended to by hidden units were initially sequential

and became progressively less so, as more recently recruited hidden units attended to the lower-

order results of previous learning. The ability to reuse the older feature-detectors upstream also

manifested itself in the fact that an initial focus on the ends of sequences gave way to attention

to groupings of interior elements.

Conservation of representations through weight-freezing

Clearly the preservation of previous learning through the freezing of input-side (input–hidden)

weights also plays a role in producing the above effects. However, in section 2.6.2 doubts were

raised concerning the domain-general status of such preservation of behaviours from previous

stages — in particular it did not seem clear that it would be possible to elicit earlier behaviour

in every domain associated with the RRH.

The freezing strategy of cascade-correlation also acted to give the fluctuations in misclassifi-

cation error associated with the article-function mapping task in chapter 5. But as the studies of

Squires and Shavlik (1991) and Mohraz and Protzel (1996) suggest, on some tasks freezing can

be detrimental to both learning and generalisation performance, and it seems likely that freezing

is partly responsible for the poor performance of the architecture on structural transfer tasks.

Learning mechanisms and granularity

Alternation of focus between error-driven and correlation-driven learning was found to act at

too low a level of granularity to correspond to the macroscopic phase-progressions of the RR

model. In all but the simplest cases (in particular the model of article–function mapping without

object-recognition of section 5.4) several unit recruitments tended to correspond to a focus on

a particular set of features or a trend in training or generalisation error. These findings run

counter to the suggestion of Shultz (1994) that a single round of cascade-correlation learning

(i.e., a phase of output-side learning, followed by a phase of correlation-driven learning and a
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8.4 Testing for RR
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limitedness of the network meant that performance again improved fastest on the most salient

feature.

8.6.2 Cascade-correlation and skeletonisation

Although cascade-correlation is a constructive and skeletonisation a selectionist scheme, they

cannot be regarded as directly complementary to each other. The main reasons for this relate

to the differences discussed above between the cascade-correlation architecture and backpropa-

gation. Other differences include the kind of off-line processing involved in each model. While

cascade-correlation involves correlation-driven learning mediated by previous structure, skele-

tonisation works directly on the trained weights. In the terms of the discussion in Clark and

Karmiloff-Smith (1993) and Bechtel (1993), cascade-correlation redescribes representations at

the units, while skeletonisation acts on the procedure itself embodied by the weights, although

there is some overlap in these procedures since skeletonisation deletes units rather than connec-

tions, and the new unit structure recruited by cascade-correlation is affected by the previously

trained weights. Quartz and Sejnowski (forthcoming) also present recent evidence for the ar-

gument in favour of neural constructivism over selectionism as the predominant mechanism

underlying representational change during cortical maturation.

8.6.3 Comparison with other work on explicitation

Greco and Cangelosi’s redescription model

Although their model (see section 3.9.1) appears to capture the idea of a redescription process

which acts entirely off-line to the usual error-driven input–output mapping, there are several

aspects of the RR model omitted by Greco and Cangelosi (1996b) and which the present study

addresses. Firstly, they assume that the explicitness of representations can be assessed through

inspection of the results of unsupervised learning of categories from the hidden-layer represen-

tation of a backpropagation network. Accessibility of the resulting representations to other

processes is not addressed in practice. Their work does not attempt to model tasks cited by

Karmiloff-Smith, unlike the present study, and nor does it investigate the dynamics of change

over a number of phases as this study does.

Similarities between this model and the cascade-correlation models include the freezing of

the network structure embodying knowledge of the original task and the error-driven method

used in the initial learning phase.

Thornton’s explicitation model

Like the above model, this model incorporates non-error-driven learning, but, in its use of scaf-

folding through training-set change, inherently addresses knowledge reuse. The explicitation
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formal constraints on the RR process such as initial configurations and the relative influence of
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The work of French (1995) and O’Reilly and McClelland (1994) has explored the use of twin-

network schemes inspired by the hippocampus and neocortex to avoid catastrophic interference

between sequentially learned concepts. It is possible that some of the techniques from these mod-

els could be incorporated in an improved model of transfer. However any further investigation

of RR and transfer would also need to address the issue of whether transferable representations

can be formed in a network trained on one domain and transferred to another domain without

information from the second domain being used in any way to inform the design or training of

the first network.

Extending the comparative study of error-driven models

Comparison with backpropagation It would be interesting to compare the performance of

standard backpropagation with cascade-correlation on the training- and test-sets used here.

This would substantiate the conjectures made above that the two algorithms capture similar

qualitative-change phenomena via different means, i.e., via herding in backpropagation and

freezing in cascade-correlation.

8.8 Contributions of this thesis

This thesis presents the first study dedicated to investigating the claims that connectionist archi-

tectures can provide models for the RRH in the context of particular domains discussed as ev-

idence for RR effects by Karmiloff-Smith, specifically sequence-learning (exemplified by count-

ing) and language acquisition. In particular it investigates whether a class of such architectures

— those which are both incremental and error-driven — are particularly suited to this modelling

effort. It is also the first practical investigation of netwo
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