


Imagine that this forms a single case in a learner's testing set. We consider

this case to be unseen for the learner if it does not appear in the corresponding

training set. But what if the following case appears in the training set?

0.000 yes 3.444 left up 2 119 8.343 72 t 65.225 f

Although the two cases seem identical there is a small di�erence: the seventh

value is 8.343 rather than 8.342. Technically, then, we can still treat the original

case as unseen. But in doing so we may feel a little uncomfortable. An extremely

close approximation of the unseen case exists in the training set. Any learner

which sees all the cases in the training set has virtually seen the unseen case.

Where such `virtual seen' cases exist within testing data, measures of general-

isation performance may be misleading. Ideally, experimenters should eliminate

virtual seens from any testing data before usage. This may involve ensuring that

every test case has a su�cient level of dissimilarity with every training case.

Where



(2) Construct the testing set by randomly selecting (without replacement) the

appropriate number of cases from the dataset.

(3) Form the training set out of the remaining cases.

(4)



The 1-NN algorithm used for this experiment used basic `city-block' distance

measure. The distance D(A;B) between two cases A and B was de�ned to be

D(A;B) =

n
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) was the normalised numeric di�erence between A

i

and B

i

if both values were numeric, and the number of explicit character di�erences

expressed as a fraction of the length of the shortest string, if both values were

strings (i.e., symbolic values). In the case of one of the values being missing,

the di�erence was de�ned as 1/10 of the maximum di�erence.

The generalisation performance achieved by the 1-NN algorithm using 2/3-

sized training sets (the size Holte used) is shown in Table 1. The performance

of C4.5 is also shown.

Dataset BC CH GL G2 HD HE HO HY

1R 68.7 67.6 53.8 72.9 73.4 76.3 81.0 97.2

C4.5 72.0 99.2 63.2 74.3 73.6 81.2 83.6 99.1

1-NN 69.7 90.1 70.1 80.6 78.1 79.3 78.5 96.9

Dataset IR LA LY MU SE SO VO V1

1R 93.5 71.5 70.7 98.4 95.0 81.0 95.2 86.8

C4.5 93.8 77.2 77.5 99.9 97.7 97.5 95.6 89.4

1-NN 94.6 85.8 76.8 100.0 87.9 100.0 93.1 88.1

The performance data for 1-NN and C4.5 are shown in Figure 1 in graph

form. Interestingly, the 1-NN algorithm produced performance which was either

comparable or superior to C4.5 in seven of the 16 cases. In the remaining nine

cases the performance was on average no more than 3 percentage points worse

than that of C4.5. In all cases the performance was superior to that of Holte's

1R algorithm.

The measured performance of 1-NN algorithm in this study appears to be

broadly compatible with its performance (or the performance of a K-NN variant)

as reported in similar studies such as [Aha and Kibler, 1989] and [Henery, 1994].

However, the performance obtained in this study is in general superior to that

reported by Weiss and Kapouleas [1989]. They recorded a mean generalisation





This result is in agreement with Friedman's analysis [Friedman, 1994] which

explains the surprising robustness of NN methods against the so-called `curse of

dimensionality' in terms of the redundant distributional properties of common

datasets. It is also in agreement with the general implications of Holte's study.

Holte showed that very simple learning processes can produce good performance

on these problems. The present study has shown much the same thing. But of

course 1-NN and 1R are `simple' in di�erent ways. 1R attempts to construct

a rule based on observations on the minimum number of attributes. 1-NN on

the other hand uses a rule which takes into account observations on all the

available attributes. Thus the results of this study show that the Holte datasets

are simple in at least two di�erent senses.

3 The e�ect of varying the training set propor-

tion

To try to get a better idea about the reasons for the rather small di�erence be-

tween the performance of 1-NN, 1R and C4.5 on the Holte datasets, experiments

were carried out to determine the average performance of the 1-NN algorithm

on a range of training set sizes. The performance of the algorithm was in fact

sampled on training sets built by randomly choosing 0.5%, 2%, 33% (1/3) and

66% (2/3), 98% and 99.5% of the original cases. The generalisation performance

was then averaged over 50 runs at each training set size. The results of these

experiments are displayed in Figure 2.

In general, one expects the performance of the NN algorithm to increase

with the size of the training set. The performance should be very poor if the

training set is nearly empty and very good if the training set contains nearly all

the possible cases. Thus, given the training set proportions used in this survey,

we expect generalisation curves to approximate an upwards sloping diagonal.

In fact, none of the curves shown in Figure 2have this form. The curve for the

GL dataset is perhaps the best approximation. But in general the curves are

remarkably at.

The implications of this are worth some consideration. In order for a dataset

to have a high, at generalisation curve, it is essential that the 1-NN algorithm

performs well on nearly empty training sets, i.e., training sets which include

only a small proportion of the dataset. But we should only expect this to occur

if the data are highly organised, i.e., if the classes in the data are very cleanly

separated. In this situation any example taken from a class can serve as an

exemplar for the class and thus provide a 1-NN algorithm with an e�ective

representation of that class. Thus a very few examples may well su�ce to

produce excellent performance from the 1-NN algorithm.

Of course, even with clean separation of classes, a 1-NN algorithm cannot

produce good performance unless the training set contains at least one exemplar
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4 Summary and Conclusion

In some cases, the instances that we present to a learner may be incomensurable

and thus impossible to test for similarity. More frequently, there is an explicit or

implicit distance metric over instances. In this situation, a given testing set may

contain very close approximations of cases from the training set. The paper has

described such cases as `virtual seens' and noted that generalisation statistics

derived in the presence of virtual seens may be misleading or ambiguous.

The performance of the 1-NN algorithm can be used to derive a generalisa-

tion baseline against which true or relative generalisation can be measured. This

approach was demonstrated though an application involving Holte's compara-

tive study of the performance of 1R and C4.5 on 16 commonly used datasets

from the UCI repository. The results of this experiment revealed that most of

the datasets in the Holte selection contain data showing extremely clean separa-

tion between classes. For all the Holte benchmarks, the performance achievable

through `lookup' of virtual seen cases is extremely close to the performance level

achieved by learning methods such as C4.5. We have to conclude therefore that

these datasets do not pose a substantive tests of generalisation. If we equate

learning ability with generalization ability then we have to conclude that these

datasets do not e�ectively test anything that we can meaningfully call `learning'.

This conclusion is a little startling given the central role that the UCI

datasets have played in the evolution of Machine Learning methods. However,

the wider implications are hard to trace out. Certainly, we can dispense with

the oft-stated assumption that `real-world' problems are necessarily challenging

for learning methods.
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