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Abstract

In this paper we introdue adaptive vision tehniques used, for example, in video-

onferening appliations. First, we present the reognition of identity, expression

and head pose using Radial Basis Funtion (RBF) networks. Seond, we address

gesture-based ommuniation and attentional fous, using olour/motion ues to

diret fae detetion and apture `attentional frames'. These fous the proessing

for Visually Mediated Interation via an appearane-based approah with Gabor

�lter oeÆients used as input to time-delay RBF networks. Third, we present

methods for the gesture reognition and behaviour (user-amera) oordination in

an integrated system.

Key words: Visually Mediated Interation; Fae Reognition; Gesture

Reognition; Camera Control; Time-Delay Neural Networks

1 Introdution

Visually Mediated Interation (VMI) is a proess of failitating interation

between people, either remotely or loally, using visual ues



for disourse/interation management. In partiular, gaze diretion is often as-

soiated with dieti, attention-direting pointing to indiate objets or people

of interest in the immediate ontext as part of the behavioural interation.

We know that robust traking of non-rigid objets suh as human faes and

bodies involved in mahine analysis of this kind of interative ativity is dif-

�ult due to rapid motion, olusion and ambiguities in segmentation and

model seletion. This was partially addressed by the move to ative vision

and dynami models for robust traking using sophistiated Kalman �lters,

as exempli�ed by Blake and others [1℄. Reently, these have been speialised

to allow the learning of omplex hand dynamis [23℄. More generally, researh

funded by British Teleom (BT) on Smart Rooms [38℄ and the ALIVE projet

[30℄ at MIT Media Lab has shown progress in the modelling and interpretation

of human body ativity. This used the P�nder (Person Finder) system [49℄,

whih an provide real-time human body analysis. Further analysis to model

the progression of ongoing ativity involves tehniques suh as Hidden Markov

Models





2 The RBF Network Sheme

The RBF network is a two-layer, hybrid learning network [32,33℄, whih om-

bines a supervised layer from the hidden to the output units with an un-

supervised layer from the input to the hidden units. The network model is

haraterised by individual radial Gaussian funtions for eah hidden unit,

whih simulate the e�et of overlapping and loally tuned reeptive �elds.

The RBF network is haraterised by omputational simpliity, supported

by well-developed mathematial theory, and robust generalisation, powerful

enough for real-time real-life tasks [42,43℄. The nonlinear deision boundaries

of the RBF network make it better in general for funtion approximation than

the hyperplanes reated by the multi-layer pereptron (MLP) with sigmoid

units [41℄, and they provide a guaranteed, globally optimal solution via simple,

linear optimisation. One advantage of the RBF network, ompared to the

MLP, is that it gives low f44 Td
(linear)Tj8-edrk





Table 1

Body movement and behaviour de�nitions for the gesture database.

Gesture Body Movement Behaviour

pntrl point right hand to left pointing left

pntrr point right hand to right pointing right

wavea wave right hand above head urgent wave

waveb wave right hand below head non-urgent wave

Previous approahes to reognising human gestures from real-time video as

a nonverbal modality for human-omputer interation have involved omput-

ing low-level features from motion to form temporal trajetories that an be

traked by Hidden Markov Models or Dynami Time Warping. However, for

this work we explored the potential of using simple image-based di�erenes

from video sequenes in onjuntion with the RBF network learning paradigm

to aount for variability in the appearane of a set of prede�ned gestures. The

omputational simpliity and robust generalisation of our alternative RBF ap-
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Table 2

Example interpretations of amera position vetors for group interation senarios

with three people.

Camera Position Vetor Interpretation

[0,0,0℄ frame whole sene

[1,0,0℄ fous on subjet A

[0,1,1℄ fous on subjets B and C using a split-sreen e�et

While full omputer understanding of dynami visual senes ontaining several

people may be urrently unattainable, we have investigated a omputation-

ally eÆient approah to determine areas of interest in suh senes. Speif-

ially, we have devised a method for modelling and interpretation of single-

and multi-person human behaviour in real time to ontrol video ameras [44℄.

Suh mahine understanding of human motion and behaviour is urrently a

key researh area in omputer vision, and has many real-world appliations.

Visually Mediated Interation (VMI) is partiularly important to appliations

in video teleommuniations. VMI requires intelligent interpretation of a dy-

nami visual sene to determine areas of interest for e�etive ommuniation

to remote users.

As we have seen, our general approah to modelling behaviour is appearane-

based in order to provide real-time behaviour interpretation and predition [20,44℄.

In addition, we only use



de�ned as any body movement sequene that is performed subonsiously by

the partiipant, and here, it is head pose that is the primary soure of impliit

behaviour.

However, head pose information may be insuÆient to determine
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� Pre-de�ned gestures and head pose of several individuals in the sene an

be simultaneously reognised for interpretation of the sene.

� A sene vetor-to-amera ontrol transformation an be performed via a

TDRBF network, using example-based learning.

We have been able to show how multi-person ativity senarios an be learned

from training examples and interpolated to obtain the same interpretation for



(a)

(b)

Fig. 5. Use of olour/motion information to position an attentional frame around

a person: (a) a box is entred around eah olour/motion `blob', the inner vertial

lines representing the standard deviation of the pixels along the x-axis, giving a

width measure, (b) having identi�ed whih box ontains the head (the uppermost

one in (a)), an attentional frame box is drawn around the person relative to the

head position, and sized aording to head width. The top right image shows the

image area inside the head box, bottom right the resampled area of the image inside

the attentional frame.

to give a binary map of moving skin pixels within the image, and we used loal

histogram maxima to identify potential `blob' regions. A box whih was large

enough to ontain the head at all distanes in our target range was then �tted

over the entroid of eah of these regions. Fig. 5(a) shows how eah box is

entred on the entroid of eah maximum, with the inner lines showing the

standard deviation of the pixels along the x-axis from that entroid. It an

also be seen that the hands are ignored in this example, as they are too low

down to be inluded in a fae-size `blob'.

A robust approah to head traking using olour/motion blobs is what we all

temporal mathing: the traker only onsiders blobs from the urrent frame

whih have been
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Fig. 6. (a) Two methods for segmenting 25�25 pose-varying fae data: (top row)

nose-entred, (bottom row) fae-entred, the former being used for experiments here,

(b) the grid system for deteting potential faes within a potential `head blob' region

of the image: eah area tested is represented by a 4�4 box, the thik line shows the

entral position (x; y = 0), normal line and dashed lines�TL
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Fig. 7. A blok diagram outlining the integrated system (from [22℄).

qualitative level of head-pose was found to be very useful for group interation
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of high-level models suh as Bayesian Belief Networks (BBNs) might provide a

ombination of hand-oded a priori information with mahine learning to ease

training set requirements. This is beause the BBNs model the deomposition

of the problem and it is the model parameters (onditional probabilities) that

are learnt so that higher level inferenes an be made from low level visual

evidene (see, for example, [7℄).

6 Conlusions and Further Researh

It is lear that there are many potential advantages of Visually Mediated Inter-

ation with omputers over traditional keyboard/mouse interfaes. For exam-

ple, removing system-dependant IT training and allowing the user a more in-

tuitive form of system diretion. However, we have also seen that there are still

many hallenges for integrating multi-user interation analysis and ontrol due

to the ambiguities and ombinatorial explosion of possible behavioural inter-

ations. We have demonstrated how our onnetionist tehniques an support

real-time interation by deteting faes and apturing `attentional frames' to

fous proessing. To go further we will have to build our VMI systems around

the task demands whih inlude both the limitations of our tehniques and

potentially oniting intentions from users. Connetionist tehniques are gen-

erally well suited to this kind of situation as they an learn adaptive mappings

and have inherent onstraint satisfation.

Further researh is taking two main diretions: 1) the development of gesture-

based ontrol of animated software agents in the EU Puppet projet; and 2)

the development of ontext-based ontrol in more omplex senarios in the

new EU Atipret projet. The �rst (e.g. the GestureBall appliation) extends

the use of symboli (ation seletion) and mimeti (dynami ontrol) funtions

in gesture-based interfaes where pointing an indiate the urrent avatar and

movement patterns an ontrol animation parameters. The seond involves

reognition of omplex behaviours and ativities that onsist of a sequene

of events that evolve over time [16,17℄. As yet there has been little work

that ombines automated learning of behaviours in di�erent ontexts. In other

words, it is usually only simple, generi models of behaviour that have been

learnt rather than learning when and how to apply more omplex models in

a ontext sensitive manner.

Aknowledgements

The authors gratefully aknowledge the invaluable disussion, help and fa-

ilities provided by Shaogang Gong, Jamie Sherrah and Stephen MKenna

20



under the EPSRC-funded ISCANIT projet during the development and on-

strution of the gesture database and in ollaborative work with the group

interation experiments, and also by Mike Saife and Yvonne Rogers at the

Interat Lab at the University of Sussex, for the GestureBall appliation.

Referenes

[1℄ A. Blake and A. Yuille. Active Vision. MIT Press, 1992.

[2℄ A. Bobik and A. Wilson. A state-based tehnique for the summarization and

reognition of gesture. In Proceedings of International ionofelopmenthe



[13℄ S. Duvdevani-Bar, S. Edelman, A. J. Howell, and H. Buxton. A similarity-based

method for the generalization of fae reognition over pose and expression. In

Proceedings of IEEE International Conference on Automatic Face & Gesture

Recognition, pages 118{123, Nara, Japan, 1998. IEEE Computer Soiety Press.

[14℄ J. Elman. Finding struture in time. Cognitive Science, 14:179{211, 1990.

[15℄ A. Galata, N. Johnson, and D. C. Hogg. Learning variable length Markov

models of behaviour. Computer Vision & Image Understanding, 81:398{413,

2001.

[16℄ R. J. Howarth and H. Buxton. Attentional ontrol for visual surveillane. In

S. Maybank and T. Tan, editors, ICCV Workshop on Visual Surveillance. IEEE

Computer Soiety Press, 1997.

[17℄ R. J. Howarth and H. Buxton. Coneptual desriptions from monitoring and

wathing image sequenes. Image & Vision Computing, 18:105{135, 2000.

[18℄ A. J. Howell. Automatic face recognition using radial basis function networks.

PhD thesis, University of Sussex, 1997.

[19℄ A. J. Howell. Fae reognition using RBF networks. In R. J. Howlett and L. C.

Jain, editors, Radial Basis Function Networks 2: New Advances in Design, pages

103{142. Physia-Verlag, 2001.

[20℄ A. J. Howell and H. Buxton. Learning gestures for visually mediated interation.

In P. H. Lewis and M. S. Nixon, editors, Proceedings of British Machine Vision

Conference, pages 508{517, Southampton, UK, 1998. BMVA Press.

[21℄ A. J. Howell and H. Buxton. Learning identity with radial basis funtion

networks. Neurocomputing, 20:15{34, 1998.

[22℄ A. J. Howell and H. Buxton. RBF network methods for fae detetion and

attentional frames. Neural Processing Letters, 15, 2002 (In Press).

[23℄ M. Isaard and A. Blake. A mixed-state ondensation traker with automati

model-swithing. In Proceedings of International Conference on Computer

Vision, pages 107{112, Bombay, India, 1998. IEEE Computer Soiety Press.

[24℄ A. Jebara and A. Pentland. Ation reation learning: Automati visual

analysis and synthesis of interative behaviour. In Proceedings of International

Conference on Vision Systems (ICVS'99), Las Palmas de Gran Canaria, Spain,

1999.

[25℄ T. Jebara and A. Pentland. On reversing Jensen's Inequality. In Advances in

Neural Information Processing Systems, volume 13, Denver,Colorado, 2000.

[26℄ G. Johansson. Visual pereption of biologial motion and a model for its

analysis. Perception and Psychophysics, 14:201{211, 1973.

[27℄ Ks B{j
58.8 0 Td
(1973.is)Tj
40.aDJ.Lewis(Learning)Tj
/R65 0.12ThtetionBuxtaqu
(S(using)Tj
22801 0 Td
(H.)Tj
14
/Ru199 0 Td
use2999.27(almas)℄TJ(b)-3000.6)5001.32

I21.2390.3(ba)2998.6637.6801 0 Td
(ofn)Tj
13
44.4 0 Td.9199 0 Td
[(A)4998.7800.61()5001.22(e)5001.22(e)5001.22(dings)℄TJ
58.0793 0 Td
(of)Tj
12.684 0 Td
(20rnational97602 0 Td
(Compute71969(ersing)℄Te)℄TJ
56.0398 0 Td
(on)Tj
15 06Td
(Vision)Tj
34.40 0 Td
(Lewi
[(So)-3000.49398 0 Td
(Systems)
28.2 0 Td
(I&Td
(ana6fer)5000(en)500(P℄TJ
r23.2801o)5000.61()5)5001.32(o)5000.61(gnition)℄TJ
/R103 0.12 Tf
54.2395 0 Td
(,)Tj
6.71992 0 Td
(pages)Tj
)501 Td
(197
(107{112,)Tj
44.8801 0866{871)3000.08(tten)2998
(Computer)T)Tj
58.2 0 Td(So)-3000.69(iet)2998.66(y)℄TJ
37.9203 0 Td
(Press,)Tj
8
51.7199 01997.



[28℄ M. I. Jordan. Serial order: A parallel, distributed proessing approah. In

J. L. Elman and D. E. Rumelhart, editors, Advances in Connectionist Theory:

Speech. Lawrene Erlbaum, Hillsdale, NJ, 1989.

[29℄ L. T. Kozlowski and J. E. Cutting. Reognising the sex of a walker from a

dynami poit-light display. Perception and Psychophysics, 12:575{580, 1977.

[30℄ P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The ALIVE system:

Wireless, full-body interation with autonomous agents. ACM Multimedia

Systems, 1996.

[31℄ S. J. MKenna, S. Gong, and Y. Raja. Fae reognition in dynami senes. In

A. F. Clark, editor, Proceedings of British Machine Vision Conference, pages

140{151, Colhester, UK, 1997. BMVA Press.

[32℄ J. Moody and C. Darken. Learning with loalized reeptive �elds. In

D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of 1988

Connectionist Models Summer School, pages 133{143, Pittsburgh, PA, 1988.

Morgan Kaufmann.

[33℄ J. Moody and C. Darken. Fast learning in networks of loally-tuned proessing

units. Neural Computation, 1:281{294, 1989.

[34℄ Y. Moses, Y. Adini, and S. Ullman. Fae reognition: the problem of

ompensating for illumination hanges. In J. O. Eklundh, editor, Proceedings of

European Conference on Computer Vision, Lecture Notes in Computer Science,

volume 800, pages 286{296, Stokholm, Sweden, 1994. Springer-Verlag.

[35℄ M. C. Mozer. Neural net arhitetures for temporal sequene proessing. In A. S.

Weigend and N. A. Gershenfeld, editors, Time Series Prediction: Predicting the

Future and Understanding the Past, pages 243{264. Addison-Wesley, Redwood

City, CA, 1994.

[36℄ N. Oliver, B. Rosario, and A. Pentland. Graphial models for reognising human

interations. In Advances in Neural Information Processing Systems, Denver,

Colorado, 1998.

[37℄ N. Oliver, B. Rosario, and A. Pentland. A Bayesian omputer vision system for

modeling human interations. In International Conference on Vision Systems,

Gran Canaria, Spain, 19989.

[38℄ A. Pentland. Smart rooms. Scienti�c American, 274(4):68{76, 1996.

[39℄ C. Pinhanez and A. F. Bobik. Human ation detetion using PNF propagation

of temporal onstraints. In Proceedings of IEEE Conference on Computer

Vision & Pattern Recognition, Santa-Barbara, CA, 1998.

[40℄ T. Poggio and S. Edelman. A network that learns to reognize three-dimensional

objets. Nature, 343:263{266, 1990.

[41℄ T. Poggio and F. Girosi. Regularization algorithms for learning that are

equivalent to multilayer networks. Science, 247:978{982, 1990.

23



[42℄ D. A. Pomerleau. ALVINN: An autonomous land vehile in a neural network.

In D. S. Touretzky, editor, Advances in Neural Information Processing Systems,

volume 1, pages 305{313, San Mateo, CA, 1989. Morgan Kaufmann.

[43℄ M. Rosenblum and L. S. Davis. An improved radial basis funtion network for

autonomous road-following. IEEE Transactions on Neural Networks, 7:1111{

1120, 1996.

[44℄ J. Sherrah, S. Gong, A. J. Howell, and H. Buxton. Interpretation of group

behaviour in visually mediated interation. In Proceedings of 15th International

Conference on Pattern Recognition, pages 266{269, Barelona, Spain, 2000.

[45℄ R. H. Thibadeau. Arti�ial pereption of ations. Cognitive Science, 10:117{

149, 1986.

[46℄ M. Turk. Visual interation with lifelike haraters. In Proceedings of

International Conference on Automatic Face & Gesture Recognition, pages 368{

373, Killington, VT, 1996. IEEE Computer Soiety Press.

[47℄ A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme

reognition using time-delay neural networks. IEEE Transactions on Acoustics,

Speech, & Signal Processing, 37:328{339, 1989.

[48℄ A. D. Wilson and A. F. Bobik. Reognition and interpretation of parametri

gesture. In Proceedings of International Conference on Computer Vision, pages

329{336, Bombay, India, 1998. IEEE Computer Soiety Press.

[49℄ C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. P�nder: Real-

time traking of the human body. IEEE Transactions on Pattern Analysis &

Machine Intelligence, 19:780{785, 1997.

[50℄ C. R. Wren and A. P. Pentland. Dynami models of human motion. In

Proceedings of IEEE International Conference on Automatic Face & Gesture

Recognition, pages 22{27, Nara, Japan, 1998. IEEE Computer Soiety Press.

24


