
CSRP 572 – Low Overhead Self-Checking Combinational and Sequential
Circuits Designed by Evolution

Miguel Garvie and Adrian Thompson
Centre for Computational Neuroscience and Robotics, Department of Informatics,

University of Sussex, Brighton BN1 9QH, UK.
m.m.garvie, adrianth @sussex.ac.uk , +44 (0)1273 872945, fax +44 (0)1273 877873

Abstract

Evolutionary techniques are applied to the design of self-
checking digital circuits in simulation. For the combina-
tional and sequential benchmarks attempted, evolved de-
signs are totally self-checking with respect to single stuck-at
faults in mission logic, have no latency and use significantly
less resources than hand-designed equivalents. The ap-
proach can be extended to evolve fail-safe circuits, analog
self-test, and self-checking checkers under multiple faults.

1 Introduction

As hardware is increasingly used in mission critical ap-
plications such as medicine, transport, space and industry,
avoiding faulty circuit behaviour can save lives and money.
Permanent and transient hardware faults occurring in the
field become of increasing concern as component density
increases, costs are minimised in mass produced products,
and hardware is deployed in more hostile environments.
This paper demonstrates that artificial evolution can be used
to design self-checking circuits superior to the best equiva-
lents found in the literature for small benchmarks.

Off-line built-in self-test (BIST) techniques [31, 37, 10]
are used to scan large circuits for faults post-manufacturing.
Some circuits with on-line BIST using scan methods require
the mission logic to go off-line temporarily or exhibit fault
latency [28, 3]. Self-checking (SC) circuits perform concur-
rent error detection during normal operation, are necessary
for detecting transient faults and are desirable in mission
critical applications where mission hardware must neither
stop nor fail without warning. Self-testing [30] circuits con-
taining a fault will have a non-codeword at the outputs for
some input codeword. Fault-secure circuits containing a
fault will under all input codewords either be unaffected
or output a non-codeword. Totally Self-Checking (TSC)

circuits are self-testing and fault-secure. Sequential TSC
circuits must also produce non-codeword outputs for false
state transitions. The most stringent SC designs are TSC
checkers which under multiple faults to mission and test-
ing logic satisfy the following: “the first erroneous output
resulting from an internal fault of the digital circuit is de-
tectable.”

Traditional SC architecture involves duplicating mission
logic – sometimes with diversity [2] or inversion with two-
rail logic – and comparing the duplicated outputs, thus
achieving full fault-coverage of mission logic. Error de-
tecting codes (EDC) such as Hamming, parity [26], 1-of-n
[11] and Berger [24] can achieve lower overhead often at the
expense of fault coverage. Berger codes are used in self-
checking checkers detecting multiple unidirectional faults
under certain assumptions. SC Synchronous Sequential Cir-
cuit (SSC) design methods have several limitations [27] yet
sometimes achieve error recovery under transient faults [19]
and there have been cases of less than duplication overhead
[5] with near full fault coverage. It is generally accepted



egy. A TSC edge-triggered D-latch (ETDL) was also
evolved equivalent to D&C. This previous work has es-



SIS [4] using the script recommended in the manual for Xil-
inx LUT architectures. In order to save time and given that
evolution is able to modify hand-designed circuits [8, 36]
every run was seeded with the synthesised design of the
mission logic. In the runs referred to as Locked the mis-
sion logic is immutable and evolution must find ways of
performing SC without modifying it.

Even when evolving combinational circuits the evolving
networks may be recurrent and could show an unwanted de-
pendence on the order in which inputs are presented, and
on the networks’ internal state. To demand insensitivity to
input ordering, the same approach was taken as for the ran-
domization of logic delays (above): at the start of each gen-
eration, � (the same number � defining the number of eval-
uations with random gate delays above) different orderings
of the full set of possible inputs for that task were gener-
ated, and the individuals of that generation evaluated on all
of them. On each of the � evaluations the circuit state was
reset, then the ordering of the full set of inputs was pre-
sented twice in sequence, to prevent dependence on initial
conditions.

The same procedure was carried out for the sequential
task excepting the random test pattern generation: a di-
rected graph built from the Moore FSM of the benchmark
circuit is built such that some nodes are assigned as reset
states and enough edges are marked as permanent so that
all states can be reached by moving along them. We first
choose a reset state to start from and add the input pattern
necessary to bring the FSM to this state from any other onto
the generated test pattern. A random walk is now begun
such that walking along an edge appends its input vector
to the generated pattern and removes it from the graph un-
less it is marked permanent. The walk ends when all edges
have been walked along thus ensuring that the random test
pattern generated will test all FSM state transitions.

The task evaluation score was measured as follows. Let
�� be the series of values at the ��� output bit for the final
15 time-slices of the presentation of each input, concate-
nated over all input vectors presented during an evaluation,
and ��

� the desired response. We take the modulus of the
correlation of �� and ��

�, averaged over all � outputs:

�� �

����

���
�	
����� � �

�
���

�
(1)

2.4 Evolving Self-Checking

An extra output � was recorded from circuits with the
aim that it would go high whenever a fault affected any other
output. The performance of a circuit at its main task � � and
at SC behaviour �� were evaluated separately. SC behaviour
was evaluated with three fitness measures:

1. Per fault ��� : Let �� be the number of faults affect-
ing task performance for which none of the possible
input vectors raises �. Then ��� encourages faults to
be ‘detectable’: ��� � � �� � �� � ��� where �� was
chosen to be 25, to give ��� good sensitivity when ��
is small.

2. Per instance ��� : Let SFI denote a combination of cir-
cuit state, SSA fault, and input vector. Define � � to be
the number of instances out of all possible SFI com-
binations for which the task output is incorrect but �
is low. Then ��� encourages immediate detection of
faults: ��� � � �� � �� � ��� where �� was chosen to
be 200.

3. Per transition ��� : Let �� be the number of SFI in-
stances for which mission outputs are unaffected, �
is low, but the transition to the next state is incorrect.
��� discourages FSM failure: ��� � � �� � �� � ���
where �� was chosen to be 50.

��� and ��� were used when evolving SC combinational
benchmarks. If we define output codewords to have � low
then ��� measures self-testing and ��� also measures fault-
security, so a circuit with ��� � ��� � � is TSC. ��� and ���
were used for sequential benchmarks and ��� � ��� � � is
required for TSC.

�� is measured by evaluating task fitness �� separately
under all SSA faults to every unit able to affect the task out-
puts. The same set of � evaluation conditions chosen for the
current generation is used. If �� falls by at least 0.01 due to
a fault, then it is considered to affect task performance. � �

is measured by comparing the output of the circuit at each
SFI combination with its output for the same state and input
under no faults. Outputs are deemed unaffected if they are
not different for more than 5 time steps of the 15 over which
they are monitored. To test sequential circuits at particular
states they are run fault-free with the randomly generated
test pattern and a circuit state snapshot is saved as they en-
ter each state for the first time. At each state, for each fault,



circuit exhibiting a high� when no faults were in place was
deemed to have ��� � ��� � ��� � �.

It seems foolish to concentrate on the detection of faults
at every instance when dealing with a circuit in which
some faults are not detected at any instance. Fitness
objectives were given hierarchical priorities. For com-
binational benchmarks the priorities in descending order
where ��� ��� � ��� while for sequential benchmarks they
were ��� ��� � ��� . When sorting the individuals for rank
selection the comparison operator only considered an ob-
jective if higher priority objectives were equal. An extra
objective encouraging parsimony was also used, having the
lowest priority of all.

3 Results

The maximum number of logic units available to evo-
lution was constrained between 30 and 110 (the genotype
length consequently ranged from 300 to 2200 bits) and the
time evolution was allowed to run varied from several hours
to several weeks. These factors depended monotonically on
the size of the benchmark. These runs were performed by
the concerted effort of approximately 200 2GHz computers
contributed by volunteers around the world [6].

SC circuits with full fault coverage and no error latency
over SSA faults in mission logic were evolved for all bench-
marks attempted. They all satisfy the TSC condition since
during their operation � goes high before or immediately
after outputs are incorrect due to a fault. All evolved results
can be viewed and tested on-line in a visual digital logic
simulator [6].

Table 1 compares the overhead of evolved self-checkers
with equivalents produced by other means reported in the
literature. On average, evolved TSC circuits require only
66.9% overhead over mission logic. This is an average
42.0% of the duplicate & compare (D&C) overhead. This
is significantly lower than the average 73.2% of D&C over-
head required by the best previous results out of [24, 11, 5]
for this test suite.

We will now look at three evolved TSC circuits:
HENMANIAC performs the b1 combinational benchmark,
SMILODON and Oryx perform the mc sequential bench-
mark. By error at �� we mean that unit � is behaving dif-
ferently from how it would if there were no faults in the
circuit. For example there is no error at �� � � � � if it is
SSA 1 and � � �, but there would be if � � � � �.

3.1 HENMANIAC

This TSC b1 benchmark circuit is composed of 9 gates
and detects all SSA faults affecting mission behaviour with
a maximum 3 gate delay latency. Even though the Xilinx
LUT synthesis procedures recommended in SIS produced

1076352148Figure1. HENMANIAC:aTSC b1benchmark
circuitwith 23% D&C overhead.acircuitwith6gatesfor theb1benchmark,theevolved
circuitinFig. 1requiresonly5gatesformissionoutputs.
Thisalreadymakesthemission logicsmallerandreduces





whose sources �� and ��� are similar. Even though at first
sight its operation seems to be using output cascading to-
gether with some recalculation as above (but with a non-
modular structure similar to the multiplier in [7]), a more
thorough investigation by observing dynamic circuit opera-
tion and analyzing LUT functions would provide more in-
sight possibly uncovering novel useful principles of opera-
tion. However it is not the first time that efficient evolved
circuits elude our understanding [35] due to evolution’s ca-
pacity to exploit available resources fully without caring for
modularity or other design principles. This circuit uses 15
units compared to 23 required for a D&C approach.

3.3 Oryx

This TSC circuit was not allowed to modify the 8 four-
input LUTs and two latches generated by SIS for the mc
benchmark. Two latches and 6 LUTs were added detect-
ing all SSA faults in mission units. Some of these units
are nearly duplicates of mission ones, others are fed the
mission outputs together with circuit inputs. All 5 outputs
are checked without modifying mission logic and with less
than duplication (let alone comparison) overhead. It is pos-
sible that by such unconstrained evolution, an optimal EDC
scheme has been found for this circuit.

3.4 Discussion

Even if LUT gate count is not an accurate measure of
circuit area for every technology, this measure of overhead
favours D&C as much as evolved circuits. For example
the D&C overhead for the sequential benchmark dk27 is a
copy of the optimised 8 units plus a single four-input LUT
to compare both outputs. It would be possible to perform
mapping onto a desired technology prior to parsimony fit-
ness evaluation. It is believed that the power of evolution to
exploit particular technologies would result in even greater
overhead gains.

Some evolved SC circuits may have worse timing char-
acteristics due to output cascading. However in many
cases the amount of gate delays from inputs to outputs was
not increased with respect to the original synthesised ver-
sion. Moreover, circuit modifications are also required in
order to make circuits unidirectional for use with Berger
codes. Even then, the evolved TSC circuits with unmod-
ified (locked) mission logic required an average 56.1% of
D&C overhead still significantly lower than the previous
best equivalent. The mission logic in these circuits has ex-
actly the same specifications as before SC was added. This
method could then be applied to specially designed circuits
such as high speed or unmodifiable IP cores without disrupt-
ing their characteristics. If SC circuits with a certain char-
acteristic were required, all that would be necessary would

be to add extra pressure in the fitness function. For exam-
ple a fourth fitness measure selecting for circuits with low
input–output delay could be added. In this way the nature
of evolved circuits is highly customizable.

HENMANIAC can be trivially made into a self-checking
checker under multiple faults under the assumption that all
input vectors are applied between faults arriving. Replace
�� so that � is taken from the output of one of two XOR
gates connected back to back such that each of their out-
puts is an input of the other and the remaining inputs are
taken from �� and ��. Now define an error signal or non-
codeword to be when � is non-oscillating. Now � will
oscillate whenever �� �� �� and will stop otherwise. Since
all SSA faults in all units except�� were detectable as soon
as they caused errors at outputs, and SSA faults in the os-
cillating XORs will be detected immediately, then all SSA
faults in all units are now detectable for some input vector
and they never produce errors at any output without oscilla-
tion stopping. Thus this modified HENMANIAC is a totally
self-checking checker under any amount of faults under the
assumption above. After observation, various evolved TSC
circuits operate in similar ways as HENMANIAC and could
be modified to be self-checking checkers in a similar fash-
ion.

Further analysis of SC mechanisms used by evolved cir-
cuits may arrive at mathematical models of EDC used. It is
possible that such codes are tailored for each circuit by evo-
lution finding the optimal one based on its characteristics.

Better results may have been found by evolution if given
more time to run. It often took days of evolution to reduce
the size of a circuit already fulfilling the TSC fitness criteria.
These are not known to be optimal solutions since evolving
for a few more days may have reduced the size even further.



lents found in the literature. In future as increasing amounts
of processing power are available and the methodology ma-
tures, larger benchmarks should be within reach.

The principles of operation of evolved circuits are simi-
lar to those in [8, 7] such as cascading outputs, using non-
canalizing functions and reusing units in a duplicated sec-
tion such that errors at the units only affect the original or
the duplicate. Even though the circuits analyzed share some
of these, there may be uniquely tailored EDCs for each of
them. The use of this method is two-fold. On the one
hand TSC evolved circuits can themselves be used in mis-
sion critical applications. On the other, their analysis may
provide understanding of their operation and this learning
could be added to design techniques so that such low over-
head TSC circuits could be synthesised without resorting to
evolutionary search. This would not be the first time engi-
neering has learnt from evolved designs such as those found
in nature.

There are opportunities for extension of this work such
as attempting larger benchmarks, other technology map-
pings, and including other circuit requirements such as tim-
ing. At the time of writing, self-testing checkers are being
evolved detecting multiple faults assuming or not that all in-
put vectors are applied between fault arrivals. TSC check-
ers without this assumption with full fault coverage and no
latency are the ultimate goal of SC design and one such cir-
cuit has already been evolved. Future avenues also include
evolution of SC analog hardware.

4.1 Acknowledgments

Thanks to Andy Balaam for campaigning advice, to the
patient people at COGS helpdesk, the COGS bursary that
supports Miguel Garvie’s research and to all contributors of
the Distributed Hardware Evolution Project of which there
is only space to mention the top 20 processing power con-
tributing islands and teams:

stephen boulet, Proto Clown, HisMastersVoice, TheOneIsland, Sewer Urchin, Bigparsnip, Professor-
Booty, Feral Boy, Pineapple Pokopo, sozo, demonie.com, safemode, Omnipotus, KentMein, sonicbadger,
Der Fledermaus, safemode2, Brainchild, macka3, American Maid, and teams Free-DC, US-Distributed, AMD Users,
Changelings Crew, teamsafe, Akihabara, Poland, Rechenkraft.net Germany, faf, SWilcoxon, DPC, Cambridge,
Team 351, Finland, Toker-Ring, prescott, Smartpals, The Euler Matrix, DontPanic, Landgre

References

[1] A. Avizienis. Design diversity and the immune sys-
tem paradigm: Cornerstones for information system
survivability, 2000.

[2] A. Avizienis and John P. J. Kelly. Fault-tolerance by
design diversity: Concepts and experiments. Com-
puter, 17(8):67–80, August 1984.

[3] D.W. Bradley and A.M. Tyrrell. Immunotron-
ics: Novel finite state machine architectures with
built in self test using self-nonself differentiation.

IEEE Transactions on Evolutionary Computation,
6(3):227–238, 2001.

[4] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R.
K. Brayton and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical re-
port, 1992.

[5] F. Gao and J. Hayes. On-line monitor design of finite-
state machines. In Proc. of 
�� IEEE International On-
Line Testing Workshop, pages 74–78. IEEE Computer
Society, July 2002.

[6] M. Garvie. Distributed Hardware Evolution Project
http://www.cogs.susx.ac.uk/users/mmg20/dhe.

[7] M. Garvie and A. Thompson. Evolution of combi-
national and sequential on-line self-diagnosing hard-
ware. In J. Lohn, R. Zebulum, J. Steincamp,
D. Keymeulen, A. Stoica, and M. Ferguson, editors,
Proc. 2003 NASA/DoD Conf. on Evolvable Hardware,
pages 167–173. IEEE Computer Society, 2003.

[8] M. Garvie and A. Thompson. Evolution of self-
diagnosing hardware. In A. Tyrrell, P. Haddow, and
J. Torresen, editors, Proc. 5th Int. Conf. on Evolvable
Systems (ICES2003): From biology to hardware, vol-
ume 2606 of LNCS, pages 238–248. Springer-Verlag,
2003.

[9] D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization & Machine Learning. Addison Wesley, 1989.

[10] H. Golnabi and J. Provence. RMBITP: A reconfig-
urable matrix based built-in self-test processor. Mi-
croelectronics Journal, 28:115–127, 1997.

[11] M. Gossel, Vl. Saposhnikov, , A. Dmitiriev, and Vl.
Saposhnikov. A new method for concurrent checking
by use of a 1-out-of-4 code. Proceedings of 6th IEEE
International On-Line Testing Workshop



[15] R. Katz. The NASA/GSFC Radia-
tion Effects and Analysis Home Page.
http://radhome.gsfc.nasa.gov/.

[16] J. R. Koza. Genetic Programming: On the program-
ming of computers by means of natural selection. MIT
Press, Cambridge, Mass., 1992.

[17] J. R. Koza, F. H. Bennett III, D. Andre, and M. A.
Keane. Reuse, parameterized reuse, and hierarchical
reuse of substructures in evolving electrical circuits
using genetic programming. In T. Higuchi, M. Iwata,
and L. Weixin, editors, Proc. 1st Int. Conf. on Evolv-
able Systems: From biology to hardware (ICES-96),
number 1259 in LNCS, pages 312–326. Springer-
Verlag, 1996.

[18] P. Layzell. A new research tool for intrinsic hardware
evolution. In M. Sipper, D. Mange, and A. Pérez-
Uribe, editors, Proc. 2nd Int. Conf. on Evolvable Sys-
tems (ICES’98), volume 1478 of LNCS, pages 47–56.
Springer-Verlag, 1998.

[19] I. Levin, V. Sinelnikov, M. Karpovsky, and S. Ostanin.
Sequential circuits applicable for detecting different
types of faults. In Proc. of 
�� IEEE International On-
Line Testing Workshop, pages 44–48. IEEE Computer
Society, July 2002.

[20] J. Lohn, A. Stoica, D. Keymeulen, and S. Colombano,
editors. Proc. 2nd NASA/DoD workshop on Evolvable
Hardware. IEEE Computer Society, 2000.

[21] J. Miller. On the filtering properties of evolved gate ar-
rays. In A. Stoica, J. Lohn, and D. Keymeulen, editors,
The First NASA/DoD Workshop on Evolvable Hard-
ware, pages 2–11, Pasadena, California, 1999. Jet
Propulsion Laboratory, California Institute of Tech-
nology, IEEE Computer Society.

[22] J. Miller, A. Thompson, P. Thomson, and T. Foga-
rty, editors. Proc. 3rd Int. Conf. on Evolvable Sys-
tems (ICES2000): From Biology to Hardware, volume
1801 of LNCS. Springer-Verlag, 2000.

[23] J. F. Miller, D. Job, and Vesselin K. Vassilev. Princi-
ples in the evolutionary design of digital circuits - part
I. Genetic Programming and Evolvable Machines,
1(3), 2000.

[24] A. Morozov, V. Saposhnikov, Vl. Saposhnikov, and
M. Gossel. New self-checking circuits by use of
berger-codes. Proceedings of 6th IEEE International
On-Line Testing Workshop, pages 141–146, July 2000.

[25] Phil Nigh. SIA roadmap: Test must not limit future
technologies. In Proc. of the International Test Con-
ference 1998. IEEE Computer Society Press, 1998.

[26] M. Pflanz, K. Walther, C. Galke, and H. Vierhaus. On-
line error detection and correction in storage elements
with cross-parity check. In Proc. of 
�� IEEE Interna-
tional On-Line Testing Workshop, pages 69–73. IEEE
Computer Society, July 2002.

[27] S. Piestrak. Limitations of design methods of self-
checking synchronous sequential machines. Proceed-
ings of FTCS-29, The 29th International Symposium
on Fault-Tolerant Computing, June 1999.

[28] N. Shnidman, W. Mangione-Smith, and M. Potkon-
jak. On-line fault detection for bus-based field pro-
grammable gate arrays. IEEE Transactions on VLSI
systems, 6(4):656–666, 1998.

[29] M. Sipper, D. Mange, and A. Pérez-Uribe, editors.
Proc. 2nd Int. Conf. on Evolvable Systems (ICES98),
volume 1478 of LNCS. Springer-Verlag, 1998.

[30] J. Smith and G. Metze. Strongly fault secure logic
networks. IEEE Trans. Comp., C-27(6):491–499, June
1978.

[31] A. Steininger. Testing and built-in self-test - a survey.
Journal of Systems Architecture, 46:721–747, 200.

[32] A. Stoica, D. Keymeulen, and J. Lohn, editors. Proc.
1st NASA/DoD workshop on Evolvable Hardware.
IEEE Computer Society, 1999.

[33] R. Tanese. Distributed genetic algorithms. In J.D.
Schaffer, editor, Proc. of the Third International Con-
ference of Genetic Algorithms, pages 434–439. Mor-
gan Kauffmann, 1989.

[34] A. Thompson, I. Harvey, and P. Husbands. Un-
constrained evolution and hard consequences. In
E. Sanchez and M. Tomassini, editors, Towards
Evolvable Hardware: The evolutionary engineering
approach, volume 1062 of LNCS, pages 136–165.
Springer-Verlag, 1996.


