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1 Getting Started

The Exact Tests option provides two new methods for calculating significance levels for
the statistics available through the Crosstabs and Nonparametric Tests procedures. These
new methods, the exact and Monte Carlo methods, provide a powerful means for obtain-
ing accurate results when your data set is small, your tables are sparse or unbalanced, the
data are not normally distributed, or the data 
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Figure 1.1 shows results from an entrance examination for fire fighters in a small
township. This data set compares the exam results based on the race of the applicant.

The data show that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Based on this, you might want to test the hypothesis that
exam results are not independent of race. To test this hypothesis, you can run the Pearson
chi-square test of independence, which is available from the Crosstabs procedure. The
results are shown in Figure 1.2.

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
exam results are independent of race of examinee. However, notice that the data contains
only twenty observations, that the minimum expected frequency is 0.5, and that all 12
of the cells have an expected frequency of less than 5. These are all indications that the
assumptions necessary for the standard asymptotic calculation of the significance level

Figure 1.1 Fire fighter entrance exam results

Count

5 2 2

1 1

2 3 4

Pass

No Show

Fail

Test Results
White Black Asian Hispanic

Race of Applicant

Test Results * Race of Applicant Crosstabulation

Figure 1.2 Pearson chi-square test results for fire fighter data

11.556
1

6 .073Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

1. 
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for this test may not have been met. Therefore, you should obtain exact results. The ex-
act results are shown in Figure 1.3.

The exact p value based on Pearson’s statistic is 0.040, compared to 0.073 for the as-
ymptotic value. Using the exact p value, the null hypothesis would be rejected at the
0.05 significance level, and you would conclude that there is evidence that the exam
results and race of examinee are related. This is the opposite of the conclusion that
would have been reached with the asymptotic approach. This demonstrates that when
the assumptions of the asymptotic method cannot be met, the results can be unreliable.
The exact calculation always produces a reliable result, regardless of the size, distribu-
tion, sparseness, or balance of the data.

The Monte Carlo Method
Although exact results are always reliable, some data sets are too large for the exact p
value to be calculated, yet don’t meet the assumptions necessary for the asymptotic
method. In this situation, the Monte Carlo method provides an unbiased estimate of the
exact p value, without the requirements of th
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ified number of these possible tables in order to obtain an unbiased estimate of the true
p value. Figure 1.4 displays the Monte Carlo results for the fire fighter data.

The Monte Carlo estimate of the p value is 0.041. This estimate was based on 10,000
samples. Recall that the exact p value was 0.040, while the asymptotic p value is 0.073.
Notice that the Monte Carlo estimate is extremely close to the exact value. This demon-
strates that if an exact p value cannot be calculated, the Monte Carlo method produces
an unbiased estimate that is reliable, even in circumstances where the asymptotic p value
is not.

Figure 1.4 Monte Carlo results of the Pearson chi-square test for fire fighter data

11.556
1

6 .073 .041
2

.036 .046Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed) Sig.
Lower
Bound

Upper
Bound

99% Confidence Interval

Monte Carlo Significance (2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.1. 
Based on 10000 and seed 2000000 ...2. 
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When to Use Exact Tests
Calculating exact results can be computationally intensive, time-consuming, and can
sometimes exceed the memory limits of your machine. In general, exact tests can be per-
formed quickly with sample sizes of less than 30. Table 1.1 and Table 1.2 provide a
guideline for the conditions under which exact results can be obtained quickly. In Table
1.2, r indicates rows, and c indicates columns in a contingency table.

Table 1.1 Sample sizes (N) at which the exact p values for nonparametric tests are computed 
quickly

One-sample inference
Chi-square goodness-of-fit test
Binomial test and confidence interval
Runs test
One-sample Kolmogorov-Smirnov test

Two-related-sample inference
Sign test
Wilcoxon signed-rank test
McNemar test
Marginal homogeneity test

Two-independent-sample inference
Mann-Whitney test
Kolmogorov-Smirnov test
Wald-Wolfowitz runs test

K-related-sample inference
Friedman’s test
Kendall’s W
Cochran’s Q test

K-independent-sample inference
Median test
Kruskal-Wallis test
Jonckheere-Terpstra test
Two-sample median test

N 30≤
N 100 000,≤
N 20≤
N 30≤

N 50≤
N 50≤
N 100 000,≤
N 50≤

N 30≤
N 30≤
N 30≤

N 30≤
N 30≤
N 30≤

N 50≤
N 15 K 4≤,≤
N 20 K 4≤,≤
N 100 000,≤
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Table 1.2 Sample sizes (N) and table dimensions (r, c) at which the exact p values for 
Crosstabs tests are computed quickly

2 x 2 contingency tables (obtained by selecting 
chi-square)
Pearson chi-square test
Fisher’s exact test
Likelihood-ratio test

r x c contingency tables (obtained by selecting 
chi-square)
Pearson chi-square test  and 
Fisher’s exact test  and 
Likelihood-ratio test  and 
Linear-by-linear association test and 

Correlations
Pearson’s product-moment correlation coefficient
Spearman’s rank-order correlation coefficient

Ordinal data
Kendall’s tau-b  and 
Kendall’s tau-c  and 
Somers’ d
Gamma  and 

Nominal data
Contingency coefficients  and 
Phi and Cramér’s V  and 
Goodman and Kruskal’s tau  and 
Uncertainty coefficient  and 

Kappa  and 

N 100 000,≤
N 100 000,≤
N 100 000,≤

N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤

N 7≤
N 10≤

N 20≤ r 3≤
N 20≤ r 3≤
N 30≤
N 20≤ r 3≤

N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 20≤ r 3≤
N 30≤ min r c,{ } 3≤

N 30≤ c 5≤
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How to Obtain Exact Statistics
The exact and Monte Carlo methods are available for Crosstabs and all of the Nonpara-
metric tests. 

To obtain exact statistics, open the Crosstabs dialog box or any of the Nonparametric
Tests dialog boxes. The Crosstabs and Tests for Several Independent Samples dialog
boxes are shown in Figure 1.5.

• Select the statistics that you want to calculate. To select statistics in the Crosstabs
dialog box, click Statistics.

• To select the exact or Monte Carlo method for computing the significance level of
the selected statistics, click Exact in the Crosstabs or Nonparametric Tests dialog box.
This opens the Exact Tests dialog box, as shown in Figure 1.6.

Figure 1.5 Crosstabs and Nonparametric Tests dialog boxes

Click here for exact tests
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You can choose one of the following methods for computing statistics. The method you
choose will be used for all selected statistics.

Asymptotic only. Calculates significance levels using the asymptotic method. This pro-
vides the same results that would be provided without the Exact Tests option.

Monte Carlo. Provides an unbiased estimate of the exact p value and displays a confi-
dence interval using the Monte Carlo sampling method. Asymptotic results are also dis-
played. The Monte Carlo method is less computationally intensive than the exact
method, so results can often be obtained more quickly. However, if you have chosen the
Monte Carlo method, but exact results can be





want to repeat an analysis. To reset the seed, open the Random Number Seed dialog box
from the Transform menu. The Random Number Seed dialog box is shown in Figure 1.7.

Set seed to. Specify any positive integer value up to 999,999,999 as the seed value. The
seed is reset to the specified value each time you open the dialog box and click on OK.
The default seed value is 2,000,000. 

To duplicate the same series of random numbers, you should set the seed before you gen-
erate the series for the first time.

Random seed. Sets the seed to a random value chosen by your system.

Pivot Table Output
With this release of Exact Tests, output appears in pivot tables. Many of the tables shown
in this manual have been edited by pivoting them, by hiding categories that are not rel-
evant to the current discussion, and to show more decimal places than appear by default. 

Figure 1.7 Random Number Seed dialog box
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generated from multinomial, hypergeometric, or Poisson distributions is chi-square.
This work was found to be applicable to a whole class of discrete data problems. It was
followed by significant contributions by, among others, Yule (1912), R. A. Fisher
(1925, 1935), Yates (1984), Cochran (1936, 1954), Kendall and Stuart (1979), and
Goodman (1968) and eventually evolved into the field of categorical data analysis. An
excellent up-to-date textbook dealing with this rapidly growing field is Agresti (1990).

The techniques of nonparametric and categorical data inference are popular mainly
because they make only minimal assumptions about how the data were generated—
assumptions such as independent sampling or randomized treatment assignment. For
continuous data, you do not have to know the underlying distribution giving rise to the
data. For categorical data, mathematical models like the multinomial, Poisson, or
hypergeometric model arise naturally from the independence assumptions of the sampled
observations. Nevertheless, for both the continuous and categorical cases, these methods
do require one assumption that is sometimes hard to verify. They assume that the data set
is large enough for the test statistic to converge to an appropriate limiting normal or chi-
square distribution. P values are then obtained by evaluating the tail area of the limiting
distribution, instead of actually deriving the true distribution of the test statistic and then
evaluating its tail area. P values based on the large-sample assumption are known as
asymptotic p values, while p values based on deriving the true distribution of the test
statistic are termed exact p values. While exact p values are preferred for scientific
inference, they often pose formidable computational problems and so, as a practical
matter, asymptotic p values are used in their place. For large and well-balanced data sets,
this makes very little difference, since the exact and asymptotic p values are very similar.
But for small, sparse, unbalanced, and heavily tied data, the exact and asymptotic p values
can be quite different and may lead to opposite conclusions concerning the hypothesis of
interest. This was a major concern of R. A. Fisher, who stated in the preface to the first
edition of Statistical Methods for Research Workers (1925):

The traditional machinery of statistical processes is wholly unsuited to the needs of
practical research. Not only does it take a cannon to shoot a sparrow, but it misses the
sparrow! The elaborate mechanism built on the theory of infinitely large samples is not
accurate enough for simple laboratory data. Only by systematically tackling small
problems on their merits does it seem possible to apply accurate tests to practical data.



Exact Tests 13

The example of a sparse  contingency table, shown in Figure 2.1, demonstrates
that Fisher’s concern was justified.

The Pearson chi-square test is commonly used to test for row and column independence.
For the above table, the results are shown in Figure 2.2.

The observed value of the Pearson’s statistic is , and the asymptotic p value
is the tail area to the right of 22.29 from a chi-square distribution with 16 degrees of
freedom. This p value is 0.134, implying that it is reasonable to assume row and column
independence. With Exact Tests, you can also compute the tail area to the right of 22.29
from the exact distribution of Pearson’s statistic. The exact results are shown in Figure
2.3.

3 9×

Figure 2.1 Sparse 3 x 9 contingency table

Count

7 1 1

1 1 1 1 1 1 1

8

1

2

3

VAR1
1 2 3 4 5 6 7 8 9

VAR2

33VAR953 0 0 6.5953 8.
0 g
(12.r.6 re
9530 6.5953 53u4 35.92.r.6 re
9530 6)Tj
ET
8.
0 g
(6)Tj
ET
8.
0 g0 6
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The exact p value obtained above is 0.001, implying that there is a strong row and col-
umn interaction. Chapter 9 discusses this and related tests in detail.

The above example highlights the need to compute the exact p value, rather than
relying on asymptotic results, whenever the data set is small, sparse, unbalanced, or
heavily tied. The trouble is that it is difficult to identify, a priori, that a given data set
suffers from these obstacles to asymptotic inference. Bishop, Fienberg, and Holland
(1975), express the predicament in the following way.

The difficulty of exact calculations couple
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Pearson Chi-Square Test for a 3 x 4 Table
Figure 2.4 shows results from an entrance examination for fire fighters in a small township.

The table shows that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Is this evidence that entrance exam results are related to
race? Note that while there is some evidence of a pattern, the total number of observa-
tions is only twenty. Null and alternative hypotheses might be formulated for these data
as follows:

Null Hypothesis: Exam results and race of examinee are independent.

Alternative Hypothesis: Exam results and race of examinee are not independent.

To test the hypothesis of independence, use the Pearson chi-square test of independence,
available in the  Crosstabs procedure. To get the results shown in Figure 2.5, the test was
conducted at the 0.05 significance level: 

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
the exam results are independent of the race of the examinee. However, notice that table
reports that the minimum expected frequency is 0.5, and that all 12 of the cells have an
expected frequency that is less than five.

That is, the application warns you that all of the cells in the table have small expected
counts. What does this mean? Does it matter?

Figure 2.4 Fire fighter entrance exam results

Count

5 2 2

1 1

2 3 4

Pass

No Show

Fail

Test Results
White Black Asian Hispanic

Race of Applicant

Test Results * Race of Applicant Crosstabulation

Figure 2.5 Pearson chi-square test results for fire fighter data

11.556
1

6 .073Pearson
Chi-Square

Value df

2-tailed)df
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Recall that the Pearson chi-square statistic, , is computed from the observed and
the expected counts under the null hypothesis of independence as follows:

Equation 2.1





18 Chapter 2

you can repeat this analysis for every single table in the reference set, identify all those
that are at least as extreme as the original table, and sum their exact hypergeometric
probabilities. The exact p value is this sum.

Exact Tests produces the following result:

Equation 2.5

The exact results are shown in Figure 2.6.

The exact p value based on Pearson’s statistic is 0.040. At the 0.05 level of significance,
the null hypothesis would be rejected and you would conclude that there is evidence that
the exam results and race of examinee are related. This conclusion is the opposite of the
conclusion that would be reached with the asymptotic approach, since the latter
produced a p value of 0.073. The asymptotic p value is only an approximate estimate of
the exact p value. Kendall and Stuart (1979) have proved that as the sample size goes
to infinity, the exact p value (see Equation 2.5) converges to the chi-square based p value
(see Equation 2.3). Of course, the sample size for the current data set is not infinite, and
you can observe that this asymptotic result has fared rather poorly.

Fisher’s Exact Test for a 2 x 2 Table
It could be said that Sir R. A. Fisher was the father of exact tests. He developed what is
popularly known as Fisher’s exact test for a single  contingency table. His
motivating example was as follows (see Agresti, 1990, for a related discussion). When
drinking tea, a British woman claimed to be able to distinguish whether milk or tea was
added to the cup first. In order to test this claim, she was given eight cups of tea. In four
of the cups, tea was added first, and in four of the cups, milk was added first. The order
in which the cups were presented to her was randomized. She was told that there were
four cups of each type, so that she should make four predictions of each order. The
results of the experiment are shown in Figure 2.7.

Pr X
2

11.55556≥( ) 0.0398=

11.556
1

6 .073 .040Pearson
Chi-Square
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The Pearson chi-square test of independence can be calculated to test this hypothesis.
This example tests the alternative hypothesis at the 0.05 significance level. Results are
shown in Figure 2.8.

The reported significance, 0.157, is two-sided. Because the alternative hypothesis is
one-sided, you might halve the reported significance, thereby obtaining 0.079 as the
observed p value. Because the observed p value is greater than 0.05, you might conclude
that there is no evidence that the woman can correctly guess tea-milk order, although the
observed level of 0.079 is only marginally larger than the 0.05 level of significance used
for the test.

It is easy to see from inspection of Figure 2.7 that the expected cell count under the
null hypothesis of independence is 2 for every cell. Given the popular rules of thumb
about expected cell counts cited above, this raises concern about use of the one-degree-
of-freedom chi-square distribution as an approximation to the distribution of the Pearson
chi-square statistic for the above table. Rather than rely on an approximation that has an
asymptotic justification, suppose you can instead use an exact approach. 

For the  table, Fisher noted that under the null hypothesis of independence, if
you assume fixed marginal frequencies for both the row and column marginals, then the
hypergeometric distribution characterizes the distribution of the four cell counts in the

 table. This fact enables you to calculate an exact p value rather than rely on an
asymptotic justification.

Let the generic four-fold table, , take the form

with  being the four cell counts;  and , the row totals;  and
, the column totals; and , the table total. If you assume the marginal totals as given,
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Equation 2.6

The p value for Fisher’s exact test of independence in the  table is the sum of
hypergeometric probabilities for outcomes at least as favorable to the alternative
hypothesis as the observed outcome.

Let’s apply this line of thought to the tea drinking problem. In this example, the
experimental design itself fixes both marginal distributions, since the woman was asked
to guess which four cups had the milk added first and therefore which four cups had the
tea added first. So, the table has the following general form:

Focusing on , this cell count can take the values 0, 1, 2, 3, or 4, and designating a
value for  determines the other three cell values, given that the marginals are fixed.
In other words, assuming fixed marginals, you could observe the following tables with
the indicated probabilities:

Guess
Pour

Row Total
Milk Tea

Milk 4
Tea 4
Col_Total 4 4 8

Table Pr(Table) p value

0 4 4 0.014 1.000
4 0 4
4 4 8

1 3 4 0.229 0.986
3 1 4
4 4 8

2 2 4 0.514 0.757

Pr xij{ }( )

m1

x11⎝ ⎠
⎜ ⎟
⎛ ⎞ m2

n1 x11–⎝ ⎠
⎜ ⎟
⎛ ⎞

N
n1⎝ ⎠

⎛ ⎞

----------------------------------------------------=

2 2×

x11 x12
x21 x22

x11
x11

x11 0=

x11 1=

x11 2=
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observed contingency table are naturally fixed is irrelevant to the method used to
compute the exact test. In either case, you compute an exact p value by examining the
observed table in relation to all other tables in a reference set of contingency tables
whose margins are the same as those of the actually observed table. You will see that the
idea behind this relatively simple example generalizes to include all of the
nonparametric and categorical data settings covered by Exact Tests.

Choosing between Exact, Monte Carlo, and Asymptotic P Values
The above examples illustrate that in order to compute an exact p value, you must
enumerate all of the outcomes that could occur in some reference set besides the
outcome that was actually observed. Then you order these outcomes by some measure
of discrepancy that reflects deviation from the null hypothesis. The exact p value is the
sum of exact probabilities of those outcomes in the reference set that are at least as
extreme as the one actually observed.

Enumeration of all of the tables in a reference set can be computationally intensive.
For example, the reference set of all  tables of the form5 6×



24 Chapter 2





26 Chapter 2

Figure 2.10 Left ventricular wall thickness versus sports activity

Count

1 6 7

9 9

16 16

1 16 17

1 22 23

1 25 26

1 30 31

32 32

50 50

58 58

28 28

1 15 16

51 51

1 10 11

14 14

1 63 64

21 21

24 24

3 57 60

1 41 42

47 47

4 91 95

54 54

62 62

89 89
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You can obtain the results of the likelihood-ratio statistic for this  contingency ta-
ble with the Crosstabs procedure. The results are shown in Figure 2.11.

The value of this statistic is 32.495. The asymptotic p value, based on the likelihood-
ratio test, is therefore the tail area to the right of 32.495 from a chi-square distribution
with 24 degrees of freedom. The reported p value is 0.115. But notice how sparse and
unbalanced this table is. This suggests that you ought not to rely on the asymptotic p
value. Ideally, you would like to enumerate every single  contingency table with
the same row and column margins as those in Figure 2.10, identify tables that are more
extreme than the observed table under the null hypothesis, and thereby obtain the exact
p value. This is a job for Exact Tests. However, when you try to obtain the exact
likelihood-ratio p value in this manner, Exact Tests gives the message that the problem
is too large for the exact option. Therefore, the next step is to use the Monte Carlo
option. The Monte Carlo option can generate an extremely accurate estimate of the exact
p value by sampling  tables from the reference set of all tables with the observed
margins a large number of times. The default is 10,000 times, but this can easily be
changed in the dialog box. Provided each table is sampled in proportion to its
hypergeometric probability (see Equation 2.4), the fraction of sampled tables that are at
least as extreme as the observed table gives an unbiased estimate of the exact p value.
That is, if  tables are sampled from the reference set, and  of them are at least as
extreme as the observed table (in the sense of having a likelihood-ratio statistic greater
than or equal to 32.495), the Monte Carlo estimate of the exact p value is

Equation 2.7

The variance of this estimate is obtained by straightforward binomial theory to be:

Equation 2.8

25 2×

Figure 2.11 Likelihood ratio for left ventricular wall thickness versus sports activity data

32.495 24 .115Likelihood Ratio
Value df

Asymp.
Sig.

(2-tailed)

Chi-Square Tests

25 2×

25 2×

M Q

p̂ Q
M
-----=

var p̂( ) p 1 p–( )
M

--------------------=
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Thus, a % confidence interval for p is

Equation 2.9

where  is the th percentile of the standard normal distribution. For example, if you
wanted a 99% confidence interval for p, you would use . This is the de-
fault in Exact Tests, but it can be changed in the dialog box. The Monte Carlo results for
these data are shown in Figure 2.12.

The Monte Carlo estimate of 0.044 for the exact p value is based on 10,000 random
samples from the reference set, using a starting seed of 2000000. Exact Tests also
computes a 99% confidence interval for the exact p value. This confidence interval is
(0.039, 0.050). You can be 99% sure that the true p value is within this interval. The
width can be narrowed even further by sampling more tables from the reference set. That
will reduce the variance (see tterval 36oval 30.059dof  his cow
[(will re3.5tion 488059d)-[(d )-rcentilue. This c Th
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interval (see Equation 2.9). It is a simple matter to sample 50,000 times from the
reference set instead of only 10,000 times. These results are shown in Figure 2.13.

With a sample of size 50,000 and the same starting seed, 2000000, you obtain 0.045 as
the Monte Carlo estimate of p. Now the 99% confidence interval for p is (0.043, 0.047).

Figure 2.13 Monte Carlo results with sample size of 50,000

32.495 24 .115 .0452 .043 .047Likelihood Ratio
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How good are the Monte Carlo estimates? Why would you use them rather than the
asymptotic p value of 0.115? There are several major advantages to using the Monte
Carlo method as opposed to using the asymptotic p value for inference.

1. The Monte Carlo estimate is unbiased. That is, .

2. The Monte Carlo estimate is accompanied by a confidence interval within which the
exact p value is guaranteed to lie at the specified confidence level. The asymptotic p
value is not accompanied by any such probabilistic guarantee.

3. The width of the confidence interval can be made arbitrarily small, by sampling more
tables from the reference set.

4. In principle, you could narrow the width of the confidence interval to such an extent
that the Monte Carlo p value becomes indistinguishable from the exact p value up to
say the first three decimal places. For all practical purposes, you could then claim to
have the exact p value. Of course, this might take a few hours to accomplish.

5. In practice, you don’t need to go quite so far. Simply knowing that the upper bound
of the confidence interval is below 0.05, or that the lower b
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The result, based on 10,000 observations and a starting seed of 2000000, is 0.041. This is
much closer to the exact p value for the Pearson test, 0.040, than the asymptotic p value,
0.073. As an exercise, run the Monte Carlo version of the Pearson test on this data set a few
times with different starting seeds. You will observe that the Monte Carlo estimate changes
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Data With Ties. The diastolic blood pressure (mm Hg) was measured on 6 subjects in a
treatment group and 7 subjects in a control group. The data are shown in Figure 2.17.

Figure 2.17  Diastolic blood pressure of treated and control groups
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The results of the two-sample Kolmogorov-Smirnov test for these data are shown in
Figure 2.18. 
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The asymptotic two-sided p value is 0.113. In contrast, the exact two-sided p
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The two-sample Kolmogorov-Smirnov results for these data, without ties, are shown in
Figure 2.20.

The asymptotic Kolmogorov-Smirnov two-sided p value remains unchanged at 0.113.
This time, however, it is much closer to the exact two-sided p value, which is 0.091. 
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Large but Unbalanced Data Sets

Data from a prospective study of maternal drinking and congenital sex organ malforma-
tions (Graubard and Korn, 1987) are shown in Figure 2.21 in the form of a  con-
tingency table.

The linear-by-linear association test may be used to determine if there is a dose-response re-
lationship between the average number of drinks consumed each day during pregnancy, and
the presence of a congenital sex organ malfor



Sparse Data Sets

Data were gathered from 250 college and university administrators on various indicators
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Figure 2.24 shows the asymptotic results of the Pearson chi-square test for these data.

Figure 2.24 Monte Carlo results for student/faculty ratio vs. competitiveness data

The asymptotic p value based on the Pearson chi-square test is 0.039, suggesting that
there is an interaction between competitiveness and the student/faculty ratio. Notice,
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3 One-Sample Goodness-of-Fit 
Inference

This chapter discusses tests used to determine how well a data set is fitted by a specified
distribution. Such tests are known as goodness-of-fit tests. Exact Tests computes exact
and asymptotic p values for the chi-square and Kolmogorov-Smirnov tests. 

Available Tests
Table 3.1 shows the goodness-of-fit tests available in Exact Tests, the procedure from
which each can be obtained, and a bibliographical reference for each.

Chi-Square Goodness-of-Fit Test
The chi-square goodness-of-fit test is applicable either to categorical data or to
continuous data that have been pre-grouped into a discrete number of categories. In
tabular form, the data are organized as a  contingency table, where c is the number
of categories. Cell i of this  table contains a frequency count, , of the number
of observations falling into category i. Along the bottom of the table is a  vector
of cell probabilities

Equation 3.1

such that  is associated with column i. This representation is shown in Table 3.2

Table 3.1 Available tests

Test Procedure References
Chi-square Nonparametric Tests: Chi-square Siegel and Castellan (1988)
Kolmogorov-
Smirnov

Nonparametric Tests: 1 Sample K-S Conover (1980)

1 c×
1 c× Oi

1 c×( )

π π1 π2 …πc, ,( )=

πi
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The chi-square goodness-of-fit test is used to determine with judging if the data arose
by taking N independent samples from a multinomial distribution consisting of c
categories with cell probabilities given by . The null hypothesis

Equation 3.2

can be tested versus the general alternative that  is not true. The test statistic for the
test is

Equation 3.3

where  is the expected count in cell i. High values of  indicate lack of fit
and lead to rejection of . If  is true, asymptotically, as , the random
variable  converges in distribution to a chi-square distribution with  degrees
of freedom. The asymptotic p value is, therefore, given by the right tail of this
distribution. Thus, if  is the observed value of the test statistic , the asymptotic
two-sided p value is given by

Equation 3.4

The asymptotic approximation may not be reliable when the ’s are small. For exam-
ple, Siegel and Castellan (1988) suggest that one can safely use the approximation only
if at least 20% of the ’s equal or exceed 5 and none of the ’s are less than 1. In cases
where the asymptotic approximation is suspect, the usual procedure has been to collapse
categories to meet criteria such as those suggested by Siegel and Castellan. However,
this introduces subjectivity into the analysis, since differing p values can be obtained by
using different collapsing schemes. Exact Tests gives the exact p values without making
any assumptions about the ’s or N.

Table 3.2 Frequency counts for chi-square goodness-of-fit test

Multinomial Categories Row 
Total

1 2 ... c
Cell Counts ... N
Cell Probabilities ... 1

O1 O2 Oc
π1 π2 πc

π

H0: O1 O2 …Oc, ,( ) Multinomial π N,( )∼

H0

X2 Oi Ei–( )2 Ei⁄
i 1=

c

∑=

Ei Nπi= X2

H0 H0 N ∞→
X2 c 1–( )

x2 X2

p̃2 Pr χc 1–
2 x2≥( )=

Ei

Ei Ei

πi
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The exact p value is computed in Exact Tests by generating the true distribution of
 under . Since there is no approximation, there is no need to collapse categories,

and the natural categories for the data can be maintained. Thus, the exact two-sided p
value is given by

Equation 3.5

Sometimes a data set is too large for the exact p value to be computed, yet there might
be reasons why the asymptotic p value is not sufficiently accurate. For these situations,
Exact Tests provides a Monte Carlo estimate of the exact p value. This estimate is ob-
tained by generating M multinomial vectors from the null distribution and counting how
many of them result in a test statistic whose value equals or exceeds , the test statistic
actually observed. Suppose that this number is m. If so, a Monte Carlo estimate of  is

Equation 3.6

A 99% confidence interval for  is then obtained by standard binomial theory as

Equation 3.7

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. If

, an  confidence interval for the exact p value is

Equation 3.8

Similarly, when , an  confidence interval for the exact p value is

Equation 3.9

Exact Tests uses default values of  and . While these defaults can
be easily changed, they provide quick and accurate estimates of exact p values for a wide
range of data sets.

X2 H0

p2 Pr χ2 x2≥( )=

x2

p2

p̂
2

m M⁄=

p2

CI p̂2 2.576 p̂
2

( ) 1 p̂2–( ) M⁄±=

p̂2 0= p̂2 1=

σ̂

p̂

2p335.36 re
W* n
BTTT4 1 Tf
0.5 0 T999 0Tj
.0843 0-0.0589 Tw
T2 56 399.96 l
241. Tf
-2.0482 0 TD
(=)Tj




44 Chapter 3

Example: A Small Data Set
Table 3.3 shows the observed counts and the multinomial probabilities under the null
hypothesis for a multinomial distribution with four categories.

The results of the exact chi-square goodness-of-fit test are shown in Figure 3.1

The value of the chi-square goodness-of-fit statistic is 8.0. Referring this value to a chi-
square distribution with 3 degrees of freedom yields an asymptotic p value

 

However, there are many cells with small counts in the observed  contingency
table. Thus, the asymptotic approximation is not reliable. In fact, the exact p value is

Table 3.3 Frequency counts from a multinomial distribution with four categories

Multinomial 
Categories

Row 
Total

1 2 3 4
Cell Counts 7 1 1 1 10
Cell Probabilities 0.3 0.3 0.3 .0.1 1

CATEGORY

7 3.0 4.0

1 3.0 -2.0

1 3.0 -2.0

1 1.0 .0

10

1

2

3

4

Total

Observed N Expected N Residual

Test Statistics

8.000 3 .046 .052 .020CATEGORY
Chi-Square1 df Asymp. Sig. Exact Sig.

Point
Probability

4 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.0.

1. 

Figure 3.1 Chi-square goodness-of-fit results

p̃2 Prχ3
2 8.0≥( ) 0.046= =

1 4×

p2 Pr χ2 8.0≥( ) 0.0523= =
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significant at the 5% level, 100,000 multinomial vectors can be sampled from the null
distribution. The results are shown in Figure 3.3.

This time, the Monte Carlo estimate is 0.0508, almost indistinguishable from the exact
result. Moreover, the exact p



One-Sample Goodness-of-Fit Inference 47

Notice that the asymptotic approximation gives a p value of 0.0472, while the exact p
value is 0.0507. Thus, at the 5% significance level, the asymptotic value erroneously
leads to rejection of the null hypothesis, despite the reasonably large sample size, the
small number of categories, and the fact that  for .

One-Sample Kolmogorov Goodness-of-Fit Test
The one-sample Kolmogorov test is used to determine if it is reasonable to model a data
set consisting of independent identically distributed (i.i.d.) observations from a
completely specified distribution. Exact tests offers this test for the normal, uniform, and
Poisson distributions. 

Multinomial Categories

12 10.0 2.0

7 15.0 -8.0

31 25.0 6.0

50

1

2

3

Total

Observed N Expected N Residual

Test Statistics

6.107

2

.047

.051

.002

Chi-Square1

df

Asymp. Sig.

Exact Sig.

Point Probability

Multinomial
Categories

0 cells (.0%) have expected frequencies less than
5. The minimum expected cell frequency is 10.0.

1. 

Figure 3.4 Chi-square goodness-of-fit results for medium-sized data set

Ei 10≥ i 1 2 3, ,=
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Example: Testing for a Uniform Distribution
This example is taken from Conover (1980). A random sample size of 10 is drawn from
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Runs Test
Consider a sequence of N binary outcomes, , where each  is either a 0 or
a 1. A run is defined as a succession of identical numbers that are followed and preceded
by a different number, or no number at all. For example, the sequence

(1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)

begins with a run of two 1’s. A run of three 0’s follows, and next a run of one 1. Then
comes a run of four 0’s, followed by a run of two 1’s which in turn is followed by a run
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Suppose that r is the observed value of the random variable R. The two-sided exact p
value is defined as 

Equation 4.7

where  is the expected value of R.

If a data set is too large for the computation shown in Equation 4.7 to be feasible, these
p values can be estimated very accurately using Monte Carlo sampling. 

For large data sets, asymptotic normality can be invoked. Let r denote the observed
value of the random variable R,  if , and  if

. Then the statistic

Equation 4.8

is normally distributed with a mean of 0 and a variance of 1.

The above exact, Monte Carlo, and asymptotic results apply only to binary data. How-
ever, you might want to test for the randomness of any general data series ,
where the ’s are not binary. In that case, the approach suggested by Lehmann (1975)
is to replace each  with a corresponding binary transformation

 Equation 4.9

where  is the median of the observed data series. The median is calculated in the fol-
lowing way. Let  be the observed data series sorted in ascending
order. Then

Equation 4.10

Once this binary transformation has been made, the runs test can be applied to the binary
data, as illustrated in the following data set. In addition to the median, the mean, mode,
or any specified value can be selected as the cut-off for the runs test.

p
2

Pr R E R( )– r E R( )–≥( )=

E R( )

h 0.5= r 2mn N⁄( ) 1+< h 0.5–=
r 2mn N⁄( ) 1+>

z r h 2mn N⁄( )– 1–+

2mn 2mn N–( )[ ] �–
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Example: Children’s Aggression Scores
Figure 4.2 displays in the Data Editor the aggression scores for 24 children from a
study of the dynamics of aggression in young children. These data appear in Siegel
and Castellan (1988).

Figure 4.3 shows the results of the runs test for these data.

To obtain these results, Exact Tests uses the median of the 24 observed scores (25.0) as
the cut-off for transforming the data into a binary sequence in accordance with Equation
4.8. This yields the binary sequence

(1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0).

Notice that this binary sequence of 12 1’s and 12 0’s contains 10 runs. Exact Tests
determines that all permutations of the 12 1’s and 12 0’s would yield anywhere between
a minimum of 2 runs and a maximum of 24 runs. The exact two-sided p value, or

Figure 4.2 Aggression scores in order of occurrence

25.00 12 12 24 10 -1.044 .297 .301 .081SCORE

Test
Value1

Cases <
Test

Value

Cases >=
Test

Value
Total

Cases
Number
of Runs Z

Asymp.
Sig.

(2-tailed)

Exact
Significance

(2-tailed)
Point

Probability

Median1. 

Figure 4.3 Runs test results for aggression scores data
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Notice that the asymptotic two-sided p value is 0.106, while the exact two-sided p value
is 0.071. 

1.00 4 6 10 3 -1.616 .106 .071 .038SCORE

Test
Value1

Cases <
Test

Value

Cases >=
Test

Value
Total

Cases
Number
of Runs Z

Asymp.
Sig.

(2-tailed)

Exact
Significance

(2-tailed)
Point

Probability
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Two-Sample Inference: 
Paired Samples

The tests in this section are commonly applied to matched pairs of data, such as when
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When to Use Each Test
The tests in this chapter have the common feature that they are applicable to data sets
consisting of pairs of correlated data. The goal is to test if the first member of the pair
has a different probability distribution from the second member. The choice of test is
primarily determined by the type of data being tested: continuous, binary, or categorical.

Sign test. This test is used when observations in the form of paired responses arise from
continuous distributions (possibly with ties), but the actual data are not available to us.
Instead, all that is provided is the sign (positive or negative) of the difference in responses
of the two members of each pair.

Wilcoxon signed-ranks test. This test is also used when observations in the form of paired
responses arise from continuous distributions (possibly with ties). However, you now
have the sign of the difference. You also have its rank in the full sample of response dif-
ferences. If this additional information is available, the Wilcoxon signed-ranks test is
more powerful than the sign test.

McNemar test.
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Statistical Methods
For all the tests in this chapter, the data consist of correlated pairs of observations. For
some tests, the observations are continuous (possibly with ties), while for others the
observations are categorical. Nevertheless, in all cases, the goal is to test the null
hypothesis that the two populations generating each pair of observations are identical.
The basic permutation argument for testing this hypothesis is the same for all the tests.
By this argument, if the null hypothesis were true, the first and second members of each
pair of observations could just as well have arisen in the reverse order. Thus, each pair
can be permuted in two ways, and if there are N pairs of observations, there are 
equally likely ways to permute the data. By actually carrying out these permutations,
you can obtain the exact distribution of any test statistic defined on the data. 

Sign Test and Wilcoxon Signed-Ranks Test
The data consist of N paired observations , where the X
and Y random variables are correlated, usually through a matched-pairs design. Define
the N differences

Omit from further consideration all pairs with a zero difference. Assume that for all
. The following assumptions are made about the distribution of the random

variables :

1. The distribution of each  is symmetric.

2. The ’s are mutually independent.

3. The ’s have the same median.

Let the common median of the N ’s be denoted by λ
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whose observed value is 

Equation 5.5

In other words,  is the count of the number of positive differences among the N
differences.

The permutational distributions of  and  under the null hypothesis are
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For notational convenience, you can drop the subscript and let T denote either the
statistic for the sign test or the statistic for the Wilcoxon signed-ranks test. The p value
computations that follow are identical for both tests, with the understanding that T
denotes  when the Wilcoxon signed-ranks test is being computed and denotes 
when the sign test is being computed. In either case, you can now denote the
standardized test statistic as

Equation 5.11

The two-sided asymptotic p value is defined, by the symmetry of the normal distribu-
tion, to be double the one-sided p value:

Equation 5.12

The exact one-sided p value is defined as 

Equation 5.13

where t is the observed value of T
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An unbiased Monte Carlo point estimate of the one-sided p value is 

Equation 5.15

Next, if , so that you are estimating the left tail of exact distribution, the random
variable is defined by

The Monte Carlo point estimate of the one-sided p value is once again given by
Equation 5.15. 

A 99% confidence interval for the exact one-sided p value is

Equation 5.16

The constant in the above equation, 2.576, is the upper 0.005 quantile of the standard
normal distribution. It arises because Exact Tests chooses a 99% confidence interval for
the p value as its default. However, you can easily choose any confidence level for the
Monte Carlo estimate of the p value. Ordinarily, you would not want to lower the level
of the Monte Carlo confidence interval to below the 99% default, since there should be
a high assurance that the exact p value is contained in the confidence interval.

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
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You can show that the variance of the two-sided Monte Carlo p value is four times as
large as the variance of the corresponding one.86ued Monte Carlo 
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The Monte Carlo point estimate of the exact one-sided p value is 0.001, very close to the
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The exact one-sided p value is 0.002. Notice that the exact one-sided p value for the sign
test, while still extremely significant, is nevertheless larger than the corresponding exact
one-sided p value for the Wilcoxon signed-ranks test. Since the sign test only takes into
account the signs of the differences and not their ranks, it has less power than the
Wilcoxon signed-ranks test. This accounts for its higher exact p value. The corresponding
asymptotic inference fails to capture this distinction.

Figure 5.4 Sign test results for AZT data
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McNemar Test
The McNemar test (Siegel and Castellan, 1988; Agresti, 1990) is used to test the
equality of binary response rates from two populations in which the data consist of
paired, dependent responses, one from each population. It is typically used in a repeated
measurements situation in which each subject’s response is elicited twice, once before
and once after a specified event (treatment) occurs. The test then determines if the initial
response rate (before the event) equals the final response rate (after the event). Suppose
two binomial responses are observed on each of N individuals. Let be the count of
the number of individuals whose first and second responses are both positive. Let 
be the count of the number of individuals whose first and second responses are both
negative. Let  be the count of the number of individuals whose first response is
positive and whose second response is negative. Finally, let  be the count of the
number of individuals whose first response is negative and whose second response is
positive. Then the McNemar test is defined on a single  table of the form

Let  denote the four cell probabilities for this table. The null
hypothesis of interest is

The McNemar test depends only on the values of the off-diagonal elements of the 
table. Its test statistic is

Equation 5.20

Now let y represent any generic  contingency table, and suppose that x is the 
table actually observed. The exact permutation distribution of the test statistic (see
Equation 5.20) is obtained by conditioning on the observed sum of off-diagonal terms,
or discordant pairs, 

The reference set is defined by

Equation 5.21

y11
y22

y12
y21

2 2×

y
y11 y12

y12 y22
=

π11 π12 π21 π22, , ,( )

H0:π12 π21=

2 2×

MC y ( ) y12 y21–=

2 2× 2 2×

Nd y12 y21+=

Γ y:y is 2 2;y12 y21+× Nd={ }=
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Under the null hypothesis, the conditional probability, , of observing any 
is binomial with parameters . Thus,

Equation 5.22

and the probability that the McNemar statistic equals or exceeds its observed value
, is readily evaluated as 

Equation 5.23

the sum being taken over all . The probability that the McNemar statistic is less than
or equal to  is similarly obtained. The exact one-sided p value is then defined as

Equation 5.24

You can show that the exact distribution of the test statistic  is symmetric about
0. Therefore, the exact two-sided p value is defined as double the exact one-sided p value:

Equation 5.25

In large samples, the two-sided asymptotic p value is calculated by a  approximation
with a continuity correction, and 1 degree of freedom, as shown in Equation 5.26.

Equation 5.26

The definition of the one-sided p value for the exact case as the minimum of the left and
right tails must be interpreted with caution. It should not be concluded automatically,
based on a small one-sided p value, that the data have yielded a statistically significant
outcome in the direction originally hypothesized. It is possible that the population
difference occurs in the opposite direction from what was hypothesized before gathering
the data. The direction of the difference can be determined from the sign of the test
statistic, calculated as shown in Equation 5.27.

Equation 5.27

You should examine the one-sided p value as well as the sign of the test statistic before
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Example: Voters’ Preference
The following data are taken from Siegel and Castellan (1988). The crosstabulation
shown in Figure 5.5 shows changes in preference for presidential candidates before and
after a television debate.

The results of the McNemar test for these data are shown in Figure 5.6.

The exact one-sided p value is 0.132. Notice that the value of the McNemar statistic,
, has a positive sign. This indicates that of the 20 ( ) discordant pairs, more

switched preferences from Carter to Reagan (13) than from Reagan to Carter (7). The
point probability, 0.074, is the probability that .

Figure 5.5 Crosstabulation of preference for presidential candidates before and after TV 
debate

Count
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7 27
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Debate
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Figure 5.6 McNemar test results
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The question of interest is whether there is agreement between the two pathologists. One
way to answer this question is through the measures of association discussed in Part 4.
Another way is to run the test of marginal homogeneity. The results of the exact
marginal homogeneity test are shown in Equation 5.10.

The exact two-sided p value is 0.307, indicating that the classifications by the two
pathologists are not significantly different. Notice, however, that there is a fairly large
difference between the exact and asymptotic p values because of the sparseness in the
off-diagonal elements.

Figure 5.10 Results of marginal homogeneity test
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Two-Sample Inference: 
Independent Samples

This chapter discusses tests based on two independent samples of data drawn from two
distinct populations. The objective is to test the null hypothesis that the two populations
have the same response distributions against the alternative that the response distribu-
tions are different. The data could also arise in randomized clinical trials in which each
subject is assigned randomly to one of two treatments. The goal is to test whether the
treatments differ with respect to their response distributions. Here it is not necessary to
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When to Use Each Test
The tests in this chapter deal with the comparison of samples drawn from the two distri-
butions. The null hypothesis is that the two distributions are the same.

The choice of test depends on the type of alternative hypothesis you are interested in
detecting.

Mann-Whitney test. The Mann-Whitney test, or Wilcoxon rank-sum test, is one of the
most popular two-sample tests. It is generally used to detect “shift alternatives.” That is,
the two distributions have the same general shape, but one of them is shifted relative to
the other by a constant amount under the alternative hypothesis. This test has an asymp-
totic relative efficiency of 95.5% relative to the Student’s t test when the underlying
populations are normal.

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test is a distribution-free test for
the equality of two distributions against the general alternative that they are different.
Because this test attempts to detect any possible deviation from the null hypothesis, it
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denote the distribution from which the  observations displayed in column j of the one-
way layout were drawn. The goal is to test the null hypothesis

Equation 6.2

The observations in u are independent both within and across columns. In order to test
 by nonparametric methods, it is necessary to replace the original observations in the

one-way layout with corresponding scores. These scores represent various ways of rank-
ing the data in the pooled sample of size N. Different tests utilize different scores. Let

 be the score corresponding to . Then the one-way layout, in which the original
data have been replaced by scores, is represented by Table 6.3.

This table, denoted by w, displays the observed one-way layout of scores. Inference
about  is based on comparing this observed one-way layout to others like it, in which
the individual  elements are the same but they occupy different rows and columns.
In order to develop this idea more precisely, let the set W denote the collection of all pos-

Table 6.2 One-way layout for two independent samples

Samples
1 2

.

.

.

.

.

.
.
.
.

Table 6.3 One-way layout with scores replacing original data

Samples
1 2

.

.

.

.

.

.
.
.
.

u11 u12
u21 u22

un22

un11

nj

H0: F1 F2=

H0

wij uij

w11 w12
w21 w22

wn22

wn11

Hww
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sible two-column one-way layouts, with  elements in column 1 and  elements in
column 2, whose members include w and all its permutations. The random variable 
is a permutation of w if it contains precisely the same scores as w, but these scores have
been rearranged so that, for at least one  pair, the scores  and  are
interchanged.

Formally, let

Equation 6.3

where  is a random variable, and w is a specific value assumed by it. 
To clarify these concepts, let us consider a simple numerical example. Let the

original data come from two independent samples of size 5 and 3, respectively. These
data are displayed as the one-way layout shown in Table 6.4.

As you will see in “Mann-Whitney Test” on p. 83, in order to perform the Mann-
Whitney test on these data, the original data must be replaced by their ranks. The one-
way layout of observed scores, based on replacing the original data with their ranks, is
displayed in Table 6.5.

This one-way layout of ranks is denoted by w. It is the one actually observed. Notice that
two observations were tied at 27 in u. Had they been separated by a small amount, they
would have ranked 3 and 4. But since they are tied, the mid-rank  is

Table 6.4 One-way layout of original data

Samples
1 2

27 38
30 9
55 27
72
18

Table 6.5 One-way layout with ranks replacing original data

Samples
1 2

3.5 6
5 1
7 3.5
8
2

n1 n2
w̃

i( j ) i' j',( ), , wi j, wi' j',

W w̃: w̃ w or ,= w̃ is a permutation of w{ }=

w̃

3 4+( ) 2⁄ 3.5=
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used as the rank for each of them in w. The symbol W represents the set of all possible
one-way layouts whose entries are the eight numbers in w, with five numbers in column
1 and three numbers in column 2. Thus, w is one member of W. (It is the one actually
observed.) Another member is , representing a different permutation of the numbers
in w, as shown in Table 6.6.

w'
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The shift parameter  is unknown. If it can be specified a priori that  must be either
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its variance is

Equation 6.10

and its observed value is 

Equation 6.11

The Wilcoxon rank-sum test statistic for the second column (or sample) is defined
similarly.

In its Mann-Whitney form, this observed statistic is defined by subtracting off a
constant:

Equation 6.12

The Wilcoxon rank-sum statistic corresponding to the column with the smaller Mann-
Whitney statistic is displayed and used as the test statistic.

Exact P Values
The Wilcoxon rank-sum test statistic, T, is considered extreme if it is either very large
or very small. Large values of T indicate a departure from the null hypothesis in the
direction , while small values of T indicate a departure from the null hypothesis in
the opposite direction, . Whenever the test statistic possesses a directional
property of this type, it is possible to define both one- and two-sided p values. The exact
one-sided p value is defined as

Equation 6.13

and the exact two-sided p value is defined as

Equation 6.14

var T( )
n1n2
12

----------- n1 n2 1
Σl 1=

g el el
2 1–( )

n1 n2+( ) n1 n2 1–
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Monte Carlo P Values
When exact p values are too difficult to compute, you can estimate them by Monte Carlo
sampling. The following steps show how you can use Monte Carlo to estimate the exact p
value given by Equation 6.14. The same procedure can be readily adapted to Equation 6.13.

1. Generate a new one-way layout of scores by permuting the original layout, w, in one
of the  equally likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout. 

3. Define the random variable

Equation 6.15

Repeat the above steps a total of M times to generate the realizations ( ) for
the random variable Z. Then an unbiased estimate of  is 

Equation 6.16

Next, let 

Equation 6.17

be the sample standard deviation of the ’s. Then a 99% confidence interval for the exact
p value is

Equation 6.18

A technical difficulty arises when either  or . Now the sample standard
deviation is 0 but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 6.19

N! n1!n2!( )⁄

Z
1 if T E T( )– t E T( )–≥
0 otherwise⎩

⎨
⎧

=

z1 z2 …zM, ,
p2

p̂
2

Σl 1=
M zl

M
-----------------=

σ̂ 1
M 1–
-------------- zl p̂

2
–( )2

l 1=

M

∑
1 2⁄

=

zl

CI p̂
2

2.576σ̂ / M±=

p̂
2

0= p̂
2

1=

σ̂

p̂
2

0= α

CI 0 1 (1– α 100)⁄ 1 M⁄
–,[ ]=
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Similarly, when , an % confidence interval for the exact p value is

Equation 6.20

Exact Tests uses default values of  and . While these defaults can
be easily changed, they provide quick and accurate estimates of exact p values for a wide
range of data sets.

Asymptotic P Values
The one- and two-sided p values are obtained by computing the normal approximations
to Equation 6.13 and Equation 6.14, respectively. Thus, the asymptotic one-sided p value
is defined as

Equation 6.21

and the asymptotic two-sided p value is defined as

Equation 6.22

where is the tail area to the left of z from a standard normal distribution, and 
is the standard deviation of T, obtained by taking the square root of 7.10.

Example: Blood Pressure Data
The diastolic blood pressure (mm Hg) was measured on 4 subjects in a treatment group
and 11 subjects in a control group. Figure 6.1 shows the data displayed in the Data Editor.
The data consist of two variables—pressure is the diastolic blood pressure of each
subject, and group indicates whether the subject was in the experimentally treated group
or the control group. 

p̂
2

1= α

CI 1 α 100⁄–( )1 M⁄ 1,[ ]=

M 10000= α 99%=

p̃
1

min Φ t E T( )–( ) σT⁄( ) 1 Φ t E T( )–( ) σT⁄( )–,{ }=

p̃
2

2p̃
1

=

Φ z( ) σT
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The Mann-Whitney test is computed for these data. The results are displayed in Figure 6.2.

Figure 6.1 Diastolic blood pressure of treated and control groups

Figure 6.2 Mann-Whitney results for diastolic blood pressure data

4 11.25 45.00

11 6.82 75.00

15

Treated

Control

Total

Treatment
Group

Diastolic
Blood
Pressure

N
Mean
Rank

Sum of
Ranks

Ranks

9.000 75.000 -1.720 .085 .104
2

.099 .054 .019
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Blood
Pressure

Mann-Whitney
U

Wilcoxon
W Z

Asymp.
Sig.

(2-tailed)

Exact Sig.
[2*(1-tailed

Sig.)]

Exact
Significance

(2-tailed)
Exact Sig.
(1-tailed)

Point
Probability

Test Statistics1

Grouping Variable: Treatment Group1. 

Not corrected for ties.2. 

Test Statistics1
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The Mann-Whitney statistic for the treated group, calculated by Equation 6.12, is 35.0
and for the control group is 9.0. Thus, the Wilcoxon rank-sum statistic for the control
group is used. The observed Wilcoxon rank-sum statistic is 75. The Mann-Whitney U
statistic is 9.0. The exact one-sided p value, 0.054, is not statistically significant at the
5% level. In this data set, the one-sided asymptotic p value, calculated as one-half of the
two-sided p value, 0.085, is 0.0427. This value does not accurately represent the exact
p value and would lead you to the erroneous conclusion that the treatment group is sig-
nificantly different from 
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Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is applicable in more general settings than the Mann-
Whitney test. Both are tests of the null hypothesis (see Equation 6.2). However, the
Kolmogorov-Smirnov test is a universal test with good power against general
alternatives in which  and  can differ in both shape and location. The Mann-
Whitney test has good power against location shift alternatives of the form shown in
Equation 6.7. 

The Kolmogorov-Smirnov test is a two-sided test having good power against the al-
ternative hypothesis

Equation 6.23

The Kolmogorov-Smirnov statistics used for testing the hypothesis in Equation 6.23 can
now be defined. These statistics are all functions of the empirical cumulative density
function (CDF) for  and the empirical CDF for . “Statistical Methods” on p. 78
stated that the test statistics in this chapter are all functions of the one-way layout, w,
displayed in Table 6.3, in which the original data have been replaced by appropriate
scores. Indeed, this is true here as well, since you could use the original data as scores
and construct an empirical CDF for each of the two samples of data. In that case, you
would use  as the one-way layout of scores. Alternatively, you could first convert
the original data into ranks, just like those for the Mann-Whitney test, and then construct
an empirical CDF for each of the two samples of ranked data. Hajek (1969) has
demonstrated that in either case, the same inferences can be made. Thus, the
Kolmogorov-Smirnov test is classified as a rank test. However, for the purpose of
actually computing the empirical CDF’s and deriving test statistics from them, it is often
more convenient to work directly with raw data instead of first converting them into
ranks (or mid-ranks, in the case of ties). Accordingly, let u be the actually observed one-

Figure 6.4 Monte Carlo results with 30,000 samples for diastolic blood pressure data

9.000 75.000 -1.720 .085 .104
2

.102
3

.098 .107 .056
3

.053 .059
Diastolic
Blood
Pressure

Mann-Whitney
U

Wilcoxon
W Z

Asymp.
Sig.

(2-tailed)

Exact Sig.
[2*(1-tailed

Sig.)] Sig.
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way layout of data, depicted in Table 6.2, and let w, the corresponding one-way layout
of scores, also be u. Thus, the entries in Table 6.3 are the original ’s. Now let
( ) denote the observations from the first sample sorted in
ascending order, and let ( ) denote the observations from the second
sample, sorted in ascending order. These sorted observations are often referred to as the
order statistics of the sample. The empirical CDF for each distribution is computed from
its order statistics. Before doing this, some additional notation is needed to account for
the possibility of tied observations. Among the  order statistics in the jth sample,

, let there be  distinct order statistics, with  observations all tied for
first place,  observations all tied for second place, and so on until finally, 
observations are all tied for last place. Obviously, . Let
( ) represent the  distinct order statistics of sample .
You can now compute the empirical CDF’s,  for  and  for , as shown below.
For , define

The test statistic for testing the null hypothesis (see Equation 6.2) against the two-sided
alternative hypothesis (see Equation 6.23) is the Kolmogorov-Smirnov Z and is defined as

Equation 6.24

where T is defined as

Equation 6.25

and the observed value of T is denoted by t. The exact two-sided p value for testing
Equation 6.2 against Equation 6.23 is

Equation 6.26

When the exact p value is too difficult to compute, you can resort to Monte Carlo sam-
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3. Define the random variable

Equation 6.27

Repeat the above steps a total of M times to generate the realizations  for
the random variable Z. Then an unbiased estimate of  is 

Equation 6.28

Next, let 

Equation 6.29

be the sample standard deviation of the ’s. Then a 99% confidence interval for the
exact p
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The asymptotic two-sided p value, , is based on the following limit theorem:

Equation 6.33
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The exact two-sided p value is 0.045. This demonstrates that, despite the small sample
size, there is a statistically significant difference between the two forms of vitamin C
administration. The corresponding asymptotic p value equals 0.055, which is not
statistically significant. It has been demonstrated in several independent studies (see, for
example, Goodman, 1954) that the asymptotic result is conservative. This is borne out
in the present example.

Wald-Wolfowitz Runs Test
The Wald-Wolfowitz runs test is a competitor to the Kolmogorov-Smirnov test for
testing the null hypothesis

Equation 6.34

Figure 6.6 Two-sample Kolmogorov-Smirnov results for orange juice and ascorbic acid 
data
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against the alternative hypothesis

Equation 6.35

The test is completely general, in the sense that no distributional assumptions need to be
made about  and . Thus, it is referred to as an omnibus, or distribution-free, test. 

Suppose the data consist of the one-way layout displayed as Table 6.2. The Wald-
Wolfowitz test statistic is computed in the following steps:

1. Sort all  observations in ascending order, and position them in a single
row represented as .

2. Replace each observation in the above row with the sample identifier 1 if it came
from the first sample and 2 if it came from the second sample.

3. A run is defined as a succession of identical numbers that are followed and preceded
by a different number or no number at all. The test statistic, T, for the Wald-Wolfowitz
test is the number of runs in the above row of 1’s and 2’s.

Under the null hypothesis, you expect the sorted list of observations to be well mixed
with respect to the sample 1 and sample 2 identifiers. In that case, you will see a large
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Figure 6.7 shows the data displayed in the Data Editor. Salary represents the starting
salaries of nine court employees hired between 1975 and 1979, and gender indicates the
gender of the employee.

A quick visual inspection of these data reveals that in no case was a female paid a higher
starting salary than a male hired for a comparable position. Consider these data to clarify
how the Wald-Wolfowitz statistic is obtained.

The table below consists of two rows. The first row contains the nine observations
sorted in ascending order. The second row contains the sample identifier for each obser-
vation: 1 if female and 2 if male.

By the above definition, there are only two runs in these data. Notice, however, that there
is a tie in the data. One observation from the first sample and one from the second sam-
ple are both tied with a value of 600. Therefore, you could also represent the succession
of observations and their sample identifiers as shown below.

Now there are four runs in the above succession of sample identifiers. First, there is a
run of five 1’s. Then a run of a single 2, followed by a run of a single 1. Finally, there is
a run of two 2’s.

The liberal value of the Wald-Wolfowitz test statistic is the one yielding the smallest
number of runs after rearranging the ties in all possible ways. This is denoted by .
The conservative value of the Wald-Wolfowitz test statistic is the one yielding the largest

458 500 525 550 576 600 600 700 886
1 1 1 1 1 1 2 2 2

458 500 525 550 576 600 600 700 886
1 1 1 1 1 2 1 2 2

Figure 6.7 Starting monthly salaries (in dollars) of nine court clerical workers

tmin
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7 K-Sample Inference: 
Related Samples

This chapter discusses tests based on K related samples, each of size N. It is a
generalization of the paired-sample problem described in Chapter 5. The data consist of
N independent  vectors or blocks of observations in which there is dependence
among the K components of each block. The dependence can arise in various ways. Here
are a few examples:
• There are K repeated measurements on each of N subjects, possibly at different time

points, once after each of K treatments has been applied to the subject.
• There are K subjects within each of N
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This layout consists of N independent blocks of data with K correlated observations within
each block. The data are usually continuous (possibly with ties). However, for the
Cochran’s Q test, the data are binary. Various test statistics can be defined on this two-way
layout. Usually, however, these test statistics are defined on ranked data rather than on the
original raw data. Accordingly, first replace the K observations, in block
i with corresponding ranks, . If there were no ties among these , you
would assign the first K integers , not necessarily in order, as the ranks of
these K observations. If there are ties, you would assign the average rank or mid-rank to
the tied observations. Specifically, suppose that the K observations of the first block take
on  distinct values, with  of the observations being equal to the smallest value, 
to the next smallest,  to the third smallest, and so on. Similarly, the K observations in
the second block take on  distinct values, with  of the observations being equal to
the smallest value,  to the next smallest,  to the third smallest, and so on. Finally,
the K observations in the Nth block take on  distinct values, with  of the
observations being equal to the smallest value,  to the next smallest,  to the third
smallest, and so on. It is now possible to define the mid-ranks precisely. For

, the  distinct mid-ranks in the ith block, sorted in ascending order, are

Equation 7.1

You can now replace the original observations, , in the ith block with
corresponding mid-ranks, , where each  is the appropriate selection
from the set of distinct mid-ranks . The modified two-way
layout is shown in Table 7.3.

Table 7.3 Two-way layout for mid-ranks for K related samples

Block Treatments
Id 1 2 K
1
2
.
.
.
.

.

.

.

.

.

.

.

.

.

N

ui1 ui2 …uiK, ,( )
ri1 ri2 …riK, ,( ) uijs

1 2 …K, ,( )

e1 d21 d22
d 1
1
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As an example, suppose that K = 5, there are two blocks, and the two-way layout of the
raw data (the ’s) is as shown in Table 7.4.

For the first block, , with , , . Using Equation 7.1, you
can obtain mid-ranks , , and . For the second block,

, with , . Thus, you obtain mid-ranks  and
. You can now use these mid-ranks to replace the original  values with

corresponding  values. The modified two-way layout, in which raw data have been
replaced by mid-ranks, is displayed as Table 7.5.

All of the tests discussed in this chapter are based on test statistics that are functions of
the two-way layout of mid-ranks displayed in Table 7.3. Before specifying these test
statistics, define the rank-sum for any treatment j as

Equation 7.2

the average rank-sum for treatment j as

Equation 7.3

and the average rank-sum across all treatments as

Equation 7.4

Table 7.4 Two-way layout w
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The test statistics for Friedman’s, Kendall’s W, and Cochran’s Q tests, respectively, are
all functions of , , and . The functional form for each test differs, and is defined
later in this chapter in the specific section that deals with the test. However, regardless
of its functional form, the exact probability distribution of each test statistic is obtained
by the same permutation argument. This argument and the corresponding definitions of
the one- and two-sided p values are given below.

Let T denote the test statistic for any of the tests in this chapter, and test the null
hypothesis

Equation 7.5

If  is true, the K mid-ranks, , belonging to block i could have been
obtained in any order. That is, any treatment could have produced any mid-rank, and
there are K! equally likely ways to assign the K mid-ranks to the K treatments. If you
apply the same permutation argument to each of the N blocks, there are  equally
likely ways to permute the observed mid-ranks such that the permutations are only
carried out within each block but never across the different blocks. That is, there are

 equally likely permutations of the original two-way layout of mid-ranks, where
only intra-block permutations are allowed. Each of these permutations thus has a

 probability of being realized and leads to a specific value of the test statistic. The
exact probability distribution of T can be evaluated by enumerating all of the
permutations of the original two-way layout of mid-ranks. If t denotes the observed
value of T in the original two-way layout, then

Equation 7.6

the sum being taken over all possible permutations of the original two-way layout of
mid-ranks which are such that T = t. The probability distribution (see Equation 7.6) and
its tail areas are obtained in Exact Tests by fast numerical algorithms. The exact two-
sided p value is defined as

Equation 7.7

When Equation 7.7 is too difficult to obtain by exact methods, it can be estimated by
Monte Carlo sampling, as shown in the following steps:

1. Generate a new two-way layout of mid-ranks by permuting each of the N blocks of
the original two-way layout of mid-ranks (see Table 7.3) in one of K! equally likely
ways.

rij r.j r..

H0:  There is no difference in the K treatments

H0 ri1 ri2 …riK, ,( )

K!( )N

K!( )N

K!( ) N–

Pr T t=( ) K!( ) N–

T t=
∑=

p2 Pr T t≥( ) K!( ) N–

T t≥
∑= =



104 Chapter 7





106 Chapter 7

Friedman’s test has good power against the alternative hypothesis

Equation 7.17

Notice that this alternative hypothesis is an omnibus one. It does not specify any ordering
of the treatments in terms of increases in response levels. The alternative to the null
hypothesis is simply that the treatments are different, not that one specific treatment is
more effective than another. 

Friedman’s test uses the following test statistic, defined on the two-way layout of
mid-ranks shown in Table 7.3.

Equation 7.18

The exact, Monte Carlo and asymptotic two-sided p values based on this statistic are ob-
tained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively.

Example: Effect of Hypnosis on Skin Potential
This example is based on an actual study (Lehmann, 1975). However, the original data
have been altered to illustrate the importance of exact inference for data characterized
by a small number of blocks but a large block size. In this study, hypnosis was used to
elicit (in a random order) the emotions of fear, happiness, depression, calmness, and
agitation from each of three subjects. Figure 7.1 shows these data displayed in the Data
Editor. Subject identifies the subject, and fear, happy, depress, calmness, and 9, and Eq
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Do the five types of hypnotic treatments result in different skin measurements? The data
seem to suggest that this is the case, but there were only three subjects in the sample.
Friedman’s test can be used to test this hypothesis accurately. The results are displayed
in Figure 7.2.

The exact two-sided p value is 0.027 and suggests that the five types of hypnosis are sig-
nificantly different in their effects on skin potential. The asymptotic two-sided p value,
0.057, is double the exact two-sided p value and does not show statistical significance at
the 5% level.

Because this data set is small, the exact computations can be executed quickly. For a
larger data set, the Monte Carlo estimate of the exact p value is useful. Figure 7.3 dis-
plays the results of a Monte Carlo analysis on the same data set, based on generating
10,000 permutations of the original two-way layout. 
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Figure 7.2 Friedman’s test results for hypnosis data
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Notice that the Monte Carlo point estimate of 0.027 is much closer to the true p value
than the asymptotic p value. In addition, the Monte Carlo technique guarantees with
99% confidence that the true p value is contained within the range (0.023, 0.032). This
confirms the results of the exact inference, that the differences in the five modes of hyp-
nosis are statistically significant. The asymptotic analysis failed to demonstrate this result.

Kendall’s W
Kendall’s W,
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Kendall’s W bears a close relationship to Friedman’s test; Kendall’s W is in fact a
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The point estimate of the coefficient of concordance is 0.656. The asymptotic p value of
0.055 suggests that you cannot reject the null hypothesis that the coefficient is 0. How-
ever, because of the small sample size (only 3 raters), this conclusion should be verified
with an exact test, or you can rely on a Monte Carlo estimate of the exact p value, based
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of Monte Carlo samples for both tests. If a different starting seed had been used, the two
Monte Carlo estimates of the exact p value would have been slightly different.

Example: Relationship of Kendall’s W to Spearman’s R
In Chapter 14, a different measure of association known as Spearman’s rank-order
correlation coefficient is discussed. That measure is applicable only if there are 
judges, each ranking K applicants. Could this measure be extended if N exceeded 2? One
approach might be to form  distinct pairs of judges. Then each pair
would yield a value for Spearman’s rank-order correlation coefficient. Let 
denote the average of all these Spearman correl
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Cochran’s Q Test
Suppose that the  values in the two-way layout shown in Table 7.2 were all binary,
with a 1 denoting success and a 0 denoting failure. A popular mathematical model for
generating such binary data in the context of the two-way layout is the logistic regres-
sion model

Equation 7.21

where, for all , and , ,  is the back-
ground log-odds of response,  is the block effect, and  is the treatment effect. All of
these parameters are unknown, but for identifiability you can assume that 

Friedman’s test applied to such data is known as Cochran’s Q test. As before, the null
hypothesis that there is no treatment effect can be formally stated as

Equation 7.22

Cochran’s Q test is used to test  against unordered alternatives of the form

Equation 7.23

Like Friedman’s test, Cochran’s Q is an omnibus test. The alternative hypothesis is sim-
ply that the treatments are different, not that one specific treatment is more effective than
another. You can use the same test statistic as for Friedman’s test. Because of the binary
observations, the test statistic reduces to

Equation 7.24

where  is the total number of successes in the jth treatment,  is the total number of
successes in the ith block, and  denotes the average . The
asymptotic distribution of Q is chi-square with  degrees of freedom. The exact
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and Monte Carlo results are calculated using the same permutational arguments used for
Friedman’s test. The exact, Monte Carlo and asymptotic two-sided p values are thus
obtained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively. 

Example: Crossover Clinical Trial of Analgesic Efficacy
This data set is taken from a three-treatment, three-period crossover clinical trial pub-
lished by Snapinn and Small (1986). Twelve subjects each received, in random order,
three treatments for pain relief: a placebo, an aspirin, and an experimental drug. The out-
come of treatment j on subject i is denoted as either a success  or a failure

. Figure 7.7 shows the data displayed in the Data Editor.
uij 1=n . j 1





K-Sample Inference: Related Samples 115

© Copyright IBM Corporation. 1989, 2012

This time, the exact p value, 0.059, is not significant at the 5% level, but the asymp-
totic approximation, 0.045, is. Although not strictly necessary for this small data set,
you can also run the Monte Carlo test on the first 11 subjects. The results are shown
in Figure 7.10. 

The Monte Carlo estimate of the exact p value was obtained by taking 10,000 random
permutations of the observed two-way layout. As Figure 7.10 shows, the results
matched those obtained from the exact test. The Monte Carlo sampling demonstrated
that the exact p value lies in the interval (0.050, 0.061) with 99% confidence. This is
compatible with the exact results, which also showed that the exact p value exceeds
0.05. The asymptotic result, on the other hand, erroneously claimed that the p value is
less than 0.05 and is therefore statistically significant at the 5% level.

Figure 7.10 Monte Carlo results for reduced analgesic efficacy data

11 6.2221 2 .045 .0562 .050 .061
N

Cochran's
Q df

Asymp.
Sig. Sig.

Lower
Bound

Upper
Bound

99% Confidence
Interval

Monte Carlo Sig.

Test Statistics

0 is treated as a success.1. 
Based on 10000 sampled tables with starting seed 2000000.2. 
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8 K-Sample Inference: 
Independent Samples



118 Chapter 8

Table 8.1 Available tests

The Kruskal-Wallis and the Jonckheere-Terpstra
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direction in which the K populations might be ordered under the alternative hypothesis.
Such tests are said to be inherently two-sided.

Median test. The median test is useful when you have no idea whatsoever about the al-
ternative hypothesis. It is an omnibus test for the equality of K distributions, where the
alternative hypothesis is simply that the distributions are unequal, without any further
specification as to whether they differ in shape, in location, or both. It uses only infor-
mation about the magnitude of each of the observations relative to a single number, the
median for the entire data set. Therefore, it is not as powerful as the other tests consid-
ered here, most of which use 
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Statistical Methods
The data for all the tests in this chapter consist of K independent samples each of size

, where . These N observations can be represented
in the form of the one-way layout shown in Table 8.2.

This table, denoted by u, shows the observed one-way layout of raw data. The observa-
tions in this one-way layout are independent both within and across columns. The data
arise from continuous univariate distributions (possibly with ties). Let

Equation 8.1

denote the distribution from which the  observations displayed in column j of the one-
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This table, denoted by w, shows the observed one-way layout of scores. Inference about
 is based on comparing this observed one-way layout to others like it, in which the

individual  elements are the same but occupy different rows and columns. To devel-
op this idea more precisely, let the set W denote the collection of all possible K-column
one-way layouts, with  elements in column j, the members of which include w and all
its permutations. The random variable  is a permutation of w if it contains precisely
the same scores as w but with the scores rearranged so that, for at least one 
pair, the scores  and  are interchanged. Formally, let

Equation 8.3

In Equation 8.3, you could think of  as a random variable, and w as a specific value
assumed by it. 

To clarify these concepts, consider a simple numerical example in which the original
data come from three independent samples of size 5, 3, and 3, respectively. These data
are displayed in a one-way layout, u, shown in Table 8.4.

Table 8.3 One-way layout with scores replacing original data

Samples
1 2 K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 8.4 Example of a one-way layout of original data

Samples
1 2 3

27 38 75
30 9 76
55 27 90
72
18

…
w11 w12 … w1K
w21 w22 … 22K

…

wn22 …

wn11 wnKK

H0
wij

nj
w̃

i j,( ) i' j',( ),
wij ww' j',

W w:˜ w ˜ w  or  w ˜ is a permutation of w,={ }=

w̃
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Distribution of T
In order to test the null hypothesis, , you need to derive the distribution of T under
the assumption that  is true. This distribution is obtained by the following permuta-
tional argument:

If  is true, every member  has the same probability of being observed.

Lehmann (1975) has shown that the above permutational argument is valid whether the
data were gathered independently from K populations or were obtained by assigning
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Exact P Values

For all tests against unordered alternatives, the more extreme values of T are those that
are larger than the observed t. The exact two-sided p value is then defined as

Equation 8.7

Since there is no a priori natural ordering of the K treatments under the alternative
hypothesis, large observed values of T are indicative of a departure from  but not of
the direction of the departure. Therefore, it is not possible to define a one-sided p value
for tests against unordered alternatives. 

For tests against ordered alternatives, such as the Jonckheere-Terpstra test, the test
statistic T is considered extreme if it is either very large or very small. Large values of
T indicate a departure from the null hypothesis in one direction, while small values of T
indicate a departure from the null hypothesis in the opposite direction. Whenever the test
statistic possesses a directional property of this type, it is possible to define both one-
and two-sided p values. The exact one-sided p value is defined as

Equation 8.8

and the exact two-sided p value is defined as

Equation 8.9

where  is the expected value of T.

Monte Carlo P Values

When exact p values are too difficult to compute, you can estimate them by Monte Carlo
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Repeat the above steps a total of M times to generate the realizations  for
the random variable Z. Then an unbiased estimate of  is 

Equation 8.11

Next, let 

Equation 8.12

be the sample standard deviation of the . Then a 99% confidence interval for the ex-
act p value is:

 Equation 8.13

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be shown that if , an  confidence interval for the exact p value is

Equation 8.14

Similarly when , an  confidence interval for the exact p value is

Equation 8.15

Exact Tests uses default values of  and . While these defaults can
be easily changed, we have found that they provide quick and accurate estimates of
exact p values for a wide range of data sets.

Asymptotic P Values

For tests against unordered alternatives the asymptotic two-sided p value is obtained by
noting that the large-sample distribution of T is chi-square with  degrees of
freedom. The asymptotic p value is thus

Equation 8.16

z1 z2 …zM,,( )
p2

p̂
2

M
l 1=

zl∑
M

--------------------------=

σ̂ 1
M 1–
-------------- zl p̂

2
–( )2

l 1=

M

∑
1 2⁄

=

zl's

CI p̂
2

2.576σ̂ M⁄±=
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As noted earlier, one–sided p values are not defined for tests against unordered alternatives.
For tests against ordered alternatives, in particular for the Jonckheere-Terpstra test,

the asymptotic distribution of T is normal. The one- and two-sided p values are now
defined by computing the normal approximations to Equation 8.8 and Equation 8.9,
respectively. Thus, the asymptotic one-sided exact p value is defined as

Equation 8.17

and the asymptotic two-sided p value is defined as

Equation 8.18
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The score, , corresponding to each , is defined as

Equation 8.21

Define

Equation 8.22

as the total number of observations in the jth sample that are at or below the median and 

Equation 8.23

as the total number of observations in the pooled sample that are at or below the median.
The test statistic for the median test is defined on the  contingency table

displayed in Table 8.7. The entries in the first row are the counts of the number of
subjects in each sample whose responses fall at or below the median, while the entries
in the second row are the counts of the number of subjects whose responses fall above
the median.

The probability of observing this contingency table under the null hypothesis,
conditional on fixing the margins, is given by the hypergeometric function

Equation 8.24

Table 8.7 Data grouped into a 2 x K contingency table for the median test

Group ID Samples Row Total

1 2 K

m

Column Total N

wij uij

δ��

�m
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For any , the test statistic for the median test is the usual Pearson chi-square statistic

Equation 8.25

Thus, if t is the value of T
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Example: Hematologic Toxicity Data
The data on hematologic toxicity are shown in Figure 8.1. The data consist of two
variables: drug is the chemotherapy regimen for each patient and days represents the
number of days the patient’s white blood count (WBC) was less than 500. The data
consist of 28 cases.

The exact results of the median test for these data are shown in Figure 8.2, and the results
of the Monte Carlo estimate of the exact test, using 10,000 Monte Carlo samples, are
shown in Figure 8.3.

Figure 8.1 Data on hematologic toxicity
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The median for the pooled sample is 7.0. This results in the value 4.317 for the test
statistic, based on Equation 8.25. The exact p value is 0.429 and does not provide any
evidence that the five 
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confidence interval for the exact p value, (0.419, 0.444) also supports the conclusion that
there is no significant difference in the distribution of WBC across the five drugs.

The following discussion shows the relationship between the median test and the
Pearson chi-square test. The median of these data is 7.0. The data can be divided into
two groups, with one group containing those cases with  and the other group
containing those cases with . The crosstabulation of these two groups, divided
by the median, with the five drug regimens, is shown in Figure 8.4.

The results of the Pearson chi-square test are shown in Figure 8.5. Notice that the results
are the same as those obtained by running the median test on the original one-way layout
of data.

Kruskal-Wallis Test
The Kruskal-Wallis test (Siegel and Castellan, 1988) is a very popular nonparametric
test for comparing K independent samples. When , it specializes to the Mann-
Whitney test. The Kruskal-Wallis test has good power against shift alternatives.
Specifically, you assume, as in Hollander and Wolfe (1973), that the one-way layout, u,
shown in Table 8.2, was generated by the model

Equation 8.29

WBC 7≤
WBC 7>

Figure 8.4 Hematologic toxicity data grouped into a 2 x K contingency table for the median 
test

Count

2 4 3 6 1

2 1 2 3 4

WBC <= 7

WBC > 7

GROUP

31
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for all  and . In this model,  is the overall mean,  is the
treatment effect, and the ’s are identically distributed unobservable error terms from
an unknown distribution with a mean of 0. All parameters are unknown, but for identi-
fiability, you can assume that

Equation 8.30

The null hypothesis of no treatment effect can be formally stated as

Equation 8.31

The Kruskal-Wallis test has good power against the alternative hypothesis

Equation 8.32

Notice that this alternative hypothesis does not specify any ordering of the treatments in
terms of increases in response levels. The alternative to the null hypothesis is simply that
the treatments are different, not that one specific treatment elicits greater response than
another. If there were a natural ordering of treatments under the alternative hypothesis—
if, that is, you could state a priori that the ’s are ordered under the alternative hypoth-
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Jonckheere-Terpstra Test
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being equal to the second smallest value,  distinct observations being equal to the
third smallest value, and so on, until, finally,  distinct observations are equal to the
largest value. The variance of the Jonckheere-Terpstra statistic is

Now, let  be the observed value of T. The exact, Monte Carlo, and asymptotic p
values based on the Jonckheere-Terpstra statistic can be obtained as discussed in “P
Value Calculations” on p. 123. The exact one- and two-sided p values are computed as in
Equation 8.8 and Equation 8.9, respectively. The Monte Carlo two-sided p value is
computed as in Equation 8.11, with an obvious modification to reflect the fact that you
want to estimate the probability inside the region  instead of the
region . The Monte Carlo one-sided p value can be similarly defined. The
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Figure 8.8 Jonckheere-Terpstra test results for O-ring incidents data

The Jonckheere-Terpstra test statistic is displayed in its standardized form

Equation 8.40

whose observed value is 

Equation 8.41

The output shows that , , and . Therefore,
. The exact one-sided p value is

Equation 8.42

The exact two-sided p value is

Equation 8.43

These definitions are completely equivalent to those given by Equation 8.8 and Equation
8.9, respectively. Asymptotic and Monte Carlo one- and two-sided p values can be sim-
ilarly defined in terms of the standardized test statistic. Note that  is asymptotically
normal with zero mean and unit variance.

The exact one-sided p value of 0.012 reveals that there is indeed a statistically signif-
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The main objective is to test whether the observed  contingency table is consistent
with the null hypothesis of independence of row and column classifications. Exact Tests
computes both exact and asymptotic p values for many different tests of this hypothesis
against various alternative hypotheses. These tests are grouped in a logical manner and
are presented in the next three chapters, which discuss unordered, singly ordered, and
doubly ordered contingency tables, respectively. Despite these differences, there is a
unified underlying framework for performing the hypothesis tests in all three situations.
This unifying framework is discussed below in terms of p value computations.

The p value of the observed  contingency table is used to test the null hypothesis
of no row-by-column interaction. Exact Tests provides three categories of p values for
each test. The “gold standard” is the exact p value. When it can be computed, the exact
pp p
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Defining the Reference Set
Throughout this chapter, x will be used to denote the  contingency table actually
observed, and y will denote any generic  contingency table belonging to some well-
defined reference set of  contingency tables that could have been observed. The
exact probability of observing any generic table y depends on the sampling scheme used
to generate it. When both the row and column classifications are categorical, Agresti
(1990) lists three sampling schemes that could give rise to y—full multinomial sampling,
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Notwithstanding the availability of the network algorithms, a data set is sometimes
too large for the exact p value to be feasible to compute. But it might be too sparse for
the asymptotic p value to be reliable. For this situation, Exact Tests also provides a
Monte Carlo option, where only a small proportion of the  tables in Γ are sampled,
and an unbiased estimate of the exact p value is obtained.

Monte Carlo Two-Sided P Values
The Monte Carlo two-sided p value is a very close approximation to the exact two-sided
p value, but it is much easier to compute. The examples in Chapter 10, Chapter 11, and
Chapter 12 will show that, for all practical purposes, the Monte Carlo results can be used
in place of the exact results whenever the latter are too difficult to compute. The Monte
Carlo approach is a steady, reliable procedure that, unlike the exact approach, always takes
up a predictable amount of computing time. While it does not produce the exact p value,
it does produce a fairly tight confidence interval within which the exact p value is
contained, with a high degree of confidence (usually 99%).

 In the Monte Carlo method, a total of M tables is sampled from Γ, each table being
sampled in proportion to its hypergeometric probability (see Equation 9.2). (Sampling
tables in proportion to their probabilities is known as crude Monte Carlo sampling.) 

For each table  that is sampled, define the binary outcome  if ;
0 otherwise. The arithmetic average of all M of these ’s is taken as the Monte Carlo
point estimate of the exact two-sided p value: 

Equation 9.6

It is easy to show that  is an unbiased estimate of the exact two-sided p value. Next,

Equation 9.7

is the sample standard deviation of the ’s. Then a 99% confidence interval for the
exact p value is

Equation 9.8
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A technical difficulty arises when either  or . The sample standard de-
viation is now zero, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 9.9

Similarly, when , an % confidence interval for the exact p value is

Equation 9.10

Asymptotic Two-Sided P Values
For all the tests in this chapter, the test statistic D(y) has an asymptotic chi-square dis-
tribution. The asymptotic two-sided p value is obtained as

Equation 9.11

where  is a random variable with a chi-square distribution and df are the appropriate
degrees of freedom. For tests on unordered  contingency tables, the degrees of free-
dom are ; for tests on singly ordered  contingency tables, the de-
grees of freedom are ; and tests on doubly ordered contingency tables have one
degree of freedom. Since the square root of a chi-square variate with one degree of free-
dom has a standard normal distribution, you can also work with normally distributed test
statistics for the doubly ordered  contingency tables.
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Unordered R x C Contingency 
Tables

The tests in this chapter are applicable to  contingency tables whose rows and
columns cannot be ordered in a natural way. In the absence of such an ordering, it is not
possible to specify any particular direction for the alternative to the null hypothesis that the
row and column classifications are independent. The tests considered here are appropriate
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three tests are asymptotically equivalent. The research in this area is scant and has
focused primarily on the question of which of the three asymptotic tests best matches its
exact counterpart. (See, for example, Roscoe and Byars, 1971; Chapman, 1976; Agresti
and Yang, 1987; Read and Cressie, 1988.) It is very likely that the Pearson chi-square
asymptotic test converges to its exact counterpart the fastest. You can use the Exact Tests
option to investigate this question and also to determine empirically which of the three
exact tests has the most power against specific alternative hypotheses. 

Statistical Methods
For the  contingency table shown in Table 9.1,  denotes the probability that an
observation will be classified as belonging to row i and column j. Define the marginal
probabilities:

The Pearson chi-square test, the likelihood-ratio test, and Fisher’s exact test are all ap-
propriate for testing the null hypothesis

Equation 10.1

against the general (omnibus) alternative that Equation 10.1 does not hold. An alternative
hypothesis of this form is of interest when there is no natural ordering of the rows and
columns of the contingency table. Thus, these three tests are usually applied to unordered

 contingency tables. Note that all three tests are inherently two-sided in the follow-
ing sense. A large positive value of the test statistic is evidence that there is at least one

 pair for which Equation 10.1 fails to hold, without specifying which pair.
If the sampling process generating the data is product multinomial, one set of mar-

ginal probabilities (the ’s, say) will equal unity. Then  reduces to the statement
that the c multinomial probabilities are the same for all rows. In other words, the null
hypothesis is equivalent to

Equation 10.2
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In practice, product multinomial sampling arises when r populations are compared and
the observations from each population fall into c distinct categories. The null hypothesis
is that the multinomial probability of falling in the jth category, , is the
same for each population. The Pearson, likelihood-ratio, and Fisher’s tests are most
suitable when the c categories have no natural ordering (for example, geographic
regions of the country). However, more powerf
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The question of interest is whether the distribution of the site of the oral lesion is signif-
icantly different in the three geographic regions. The row and column classifications for
this  table are clearly unordered, making it an appropriate data set for either the
Pearson, likelihood-ratio or Fisher’s tests. The contingency table is so sparse that the
usual chi-square asymptotic distribution with 16 degrees of freedom is not likely to yield
accurate 
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exact p value is 0.027, showing that there is a significant interaction between the site of the
lesion and the geographic region, but the asymptotic p value failed to demonstrate this. In
this example, the asymptotic p value was more conservative than the exact p value. 

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 10.3 shows an unbiased estimate of the exact p value for
the Pearson chi-square test based on a crude Monte Carlo sample of 10,000 tables from
the reference set. 

The Monte Carlo method produces a 99% confidence interval for the exact p value.
Thus, although the point estimate might change slightly if you resample with a different
starting seed or a different random number generator, you can be 99% confident that the
exact p value is contained in the interval 0.022 to 0.030. Moreover, you could always
sample more tables from the reference set if you wanted to further narrow the width of
this interval. Based on this analysis, it is evident that the Monte Carlo approach leads to
the same conclusion as the exact approach, demonstrating that there is indeed a signifi-
cant row-by-column interaction in this contingency table. The asymptotic inference
failed to demonstrate any row-by-column interaction.

Likelihood-Ratio Test
The likelihood-ratio test is an alternative to the Pearson chi-square test for testing inde-
pendence of row and column classifications in an unordered  contingency table.
For any observed  contingency table, the test statistic, , is denoted as 
and is computed by the formula

Equation 10.4

Figure 10.3 Monte Carlo results for oral lesions data
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For the oral lesions data displayed in Figure 10.1, . The test statistic and
its corresponding asymptotic and exact p values are shown in Figure 10.4. 

The output shows that the observed value of the test statistic is . This sta-
tistic has an asymptotic chi-square distribution with 16 degrees of freedom. The asymp-
totic p value is computed as the area under the chi-square density function to the right
of . The p
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The Monte Carlo point estimate is 0.035, which is acceptably close to the exact p value
of 0.036. More important, the Monte Carlo method also produces a confidence interval
for the exact p value. Thus, although this point estimate might change slightly if you re-
sample with a different starting seed or a different random number generator, you can
be 99% confident that the exact p value is contained in the interval 0.030 to 0.039. More-
over, you could always sample more tables from the reference set if you wanted to fur-
ther narrow the width of this interval. Based on this analysis, it is evident that the Monte
Carlo approach leads to the same conclusion as the exact approach, demonstrating that
there is indeed a significant row-by-column interaction in this contingency table. The
asymptotic inference failed to demonstrate any row-by-column interaction.

Fisher’s Exact Test
Fisher’s exact test is traditionally associated with the single  contingency table. Its
extension to unordered  tables was first proposed by Freeman and Halton (1951).
Thus, it is also known as the Freeman-Halton test. It is an alternative to the Pearson chi-
square and likelihood-ratio tests for testing independence of row and column
classifications in an unordered  contingency table. Fisher’s exact test is available
for tables larger than  through the Exact Tests option. Asymptotic results are
provided only for  tables, while exact and Monte Carlo results are available for
larger tables. For any observed  contingency table, the test statistic, , is
denoted as  and is computed by the formula

Equation 10.5

where

Equation 10.6

For the oral lesions data displayed in Figure 10.1, . The exact p values
are shown in Figure 10.6.
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Figure 10.6 Fisher’s exact test for oral lesions data
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The exact p value is defined by Equation 9.4 as the permutational probability
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Singly Ordered R x C 
Contingency Tables

The test in this chapter is applicable to  contingency tables in which the rows are
unordered but the columns are ordered. This is a common setting, for example, when
comparing r different drug treatments, each generating an ordered categorical response.
It is assumed a priori that the treatments cannot be ordered according to their rate of
effectiveness. If they can be ordered according to their rate of effectiveness—for exam-
ple, if the treatments represent increasing doses of some drug—the tests in the next
chapter are more applicable.

Available Test 
Exact Tests offers the Kruskal-Wallis test for analyzing  contingency tables in
which the rows (
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The null hypothesis is 

 Equation 11.1

The alternative hypothesis is that at least one set of multinomial probabilities is stochas-
tically larger than at least one other set of multinomial probabilities. Specifically, for

, let

The Kruskal-Wallis test is especially suited to detecting departures from the null hypoth-
esis of the form

 Equation 11.2

with strict inequality for at least one j. In other words, you want to reject  when at
least one of the populations is more responsive than the others.

Tumor Regression Rates Data
The tumor regression rates of five chemotherapy regimens, Cytoxan (CTX) alone,
Cyclohexyl-chloroethyl nitrosurea (CCNU) alone, Methotrexate (MTX) alone,
CTX+MTX, and CTX+CCNU+MTX were compared in a small clinical trial. Tumor
regression was measured on a three-point scale: no response, partial response, or
complete response. The crosstabulation of the results is shown in Figure 11.1. 
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Although Figure 11.1 shows the data in crosstabulated format to illustrate the concept
of applying the Kruskal-Wallis test to singly ordered tables, this test is obtained from the
Nonparametric Tests procedure, and your data must be structured appropriately for Non-
parametric Tests. Figure 11.2 shows these data displayed in the Data Editor. The data
consist of two variables. Chemo is a grouping variable that indicates the chemotherapy
regimen, and regressn is an ordered categorical variable with three values, where 1=No
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The observed value of the test statistic t, calculated by Equation 8.34, is 8.682. The
asymptotic two-sided p value is based on the chi-square distribution with four degrees
of freedom. The asymptotic p value is obtained as the area under the chi-square density
function to the right of 8.682. This p value is 0.070. However, this p value is not reliable
because of the sparseness of the observed contingency table.

The exact p value is defined by Equation 8.7 as the permutational probability
. The exact p value is 0.039, which implies that there is a

statistically significant difference between the five modes of chemotherapy. The
asymptotic inference failed to demonstrate this. Below the exact p value is the point
probability . This probability, 0.001, is a natural measure of the
discreteness of the test statistic. Some statisticians recommend subtracting half of its
value from the exact p value, in order to yield a less conservative mid-p value. (For more
information on the role of the mid-p method in exact inference, see Lancaster, 1961; Pratt
and Gibbons, 1981; and Miettinen, 1985.)

 Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 11.4 shows an unbiased estimate of the exact p value for
the Kruskal-Wallis test based on a crude Monte Carlo sample of 10,000 tables from the
reference set.

Figure 11.3 Results of Kruskal-Wallis test for tumor regression data
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The Monte Carlo point estimate is 0.043, which is practically the same as the exact p
value of 0.039. Moreover, the Monte Carlo method also produces a confidence interval
for the exact p
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Doubly Ordered R x C 
Contingency Tables

The tests in this chapter are applicable to  contingency tables in which both the
rows and columns are ordered. A typical example would be an  table obtained
from a dose-response study. Here the rows (r) represent progressively increasing doses
of some drug, and the columns (c) represent progressively worsening levels of drug
toxicity. The goal is to test the null hypothesis that the response rates are the same at all
dose levels. The tests in this chapter exploit the double ordering so as to have good
power against alternative hypotheses in which an increase in the dose level leads to an
increase in the toxicity level.

Available Tests
Exact Tests offers two tests for doubly ordered  contingency tables: the
Jonckheere-Terpstra test and the linear-by-linear association test. Asymptotically,
both test statistics converge to the standard normal distribution or, equivalently, the
squares of these statistics converge to the chi-square distribution with one degree of
freedom. Both the exact and asymptotic p values are available from Exact Tests. The
asymptotic p value is provided by default, while the exact p value must be specifically
requested. If a data set is too large for the exact p value to be computed, Exact Tests
offers a special option whereby the exact p value is estimated up to Monte Carlo ac-
curacy. Although the logic of the Jonckheere-Terpstra test can be applied to doubly or-
dered contingency tables, this test is performed through the Nonparametric Tests: Tests
for Several Independent Samples procedure. Table 12.1 shows the two available tests,
the procedure from which each can be obtained, and a bibliographical reference to each
test. 

Table 12.1 Available tests

Test Procedure Reference
Jonckheere-Terpstra test Nonparametric Tests: 

K Independent Samples
Lehmann (1973)

Linear-by-linear association test Crosstabs Agresti (1990)

r c×
r c×

r c×

12
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In this chapter, the null and alternative hypotheses for these tests are specified, appro-
priate test statistics are defined, and each test is illustrated with a data set.

When to Use Each Test
The Jonckheere-Terpstra and linear-by-linear association tests, while not asymptotically
equivalent, are competitors for testing row and column interaction in a doubly ordered

 table. There has been no formal statistical research on which test has greater
power. Historically, the Jonckheere-Terpstra test was developed for testing continuous
data in a nonparametric setting, while the linear-by-linear association test was used for
testing categorical data in a loglinear models setting. However, either test is applicable
for computing p values in  contingency tables as long as both the rows and columns
have a natural ordering. In this chapter, the Jonckheere-Terpstra test is applied to ordinal
categorical data. See Chapter 8 for a discussion of using this test for continuous data.
The linear-by-linear association test has some additional flexibility in weighting the
ordering and in weighting the relative importance of successive rows or columns of the
contingency table through a suitable choice of row and column scores. This flexibility
is illustrated in the treatment of the numeri
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for . Since the rows are ordered, it is possible to define one-sided alterna-
tive hypotheses of the form

Equation 12.3

or

Equation 12.4

for , with strict inequality of at least one j. Both the Jonckheere-Terpstra
and the linear-by-linear association tests are particularly appropriate for detecting
departures from the null hypothesis of the form  or , or for detecting the two-sided
alternative hypothesis that either  or  is true. Hypothesis  implies that as you
move from row i to row , the probability of the response falling in category

 rather than in category j increases. Hypothesis  states the opposite, that as
you move down a row, the probability of falling into the next higher category decreases.
The test statistics for the Jonckheere-Terpstra and the linear-by-linear association tests
are so defined that large positive values reject  in favor of , while large negative
values reject  in favor of .

Dose-Response Data
Patients were treated with a drug at four dose levels (100mg, 200mg, 300mg, 400mg)
and then monitored for toxicity. The data are tabulated in Figure 12.1. 

Notice that there is a natural ordering across both the rows and the columns of the above
 contingency table. There is also the suggestion that progressively increasing drug

doses lead to increases in drug toxicity.

i 1 2 ... r, , ,=

H1:ϒ1j ϒ2j ... ϒrj≤ ≤ ≤

H'1:ϒ1j ϒ2j ... ϒrj≥ ≥ ≥

j 1 2 ... c, , ,=

H1 H'1
H1 H'1 H1

i 1+( )
j 1+( ) H'1

H0 H10
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Jonckheere-Terpstra Test 
Figure 12.1 shows the data in crosstabulated format to illustrate the concept of applying
the Jonckheere-Terpstra test to doubly ordered tables, however this test is obtained from
the Nonparametric Tests procedure, and your data must be structured appropriately for
Nonparametric Tests. Figure 12.2 shows a portion of these data displayed in the Data
Editor. The data consist of two variables. Dose 
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In the present example, the smaller permutational probability is the one that evaluates
the right tail. It is displayed on the screen as . The exact one-
sided p value is the point probability . This probability, 0.000, is a natural
measure of the discreteness of the test statistic. Some statisticians advocate subtracting
half its value from the exact p value, thereby yielding a less conservative mid-p value.
(See Lancaster, 1961; Pratt and Gibbons, 1981; and Miettinen, 1985 for more
information on the role of the mid-p value in exact inference.) Equation 12.8 defines the
exact two-sided p value

Equation 12.8

Notice that this definition will produce the same answer as Equation 9.4, with
for all .

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 12.4 displays an unbiased estimate of the exact one- and
two-sided p value for the Jonckheere-Terpstra test based on a crude Monte Carlo sample
of 10,000 tables from the reference set.

The Monte Carlo point estimate of the exact one-sided p value is 0.051, which is very
close to the exact one-sided p value of 0.049. Moreover, the Monte Carlo method also
produces a confidence interval for the exact p value. Thus, although this point estimate
might change slightly if you resample with a different starting seed or a different random
number generator, you can be 99% confident that the exact p value is contained in the
interval 0.045 to 0.057. The Monte Carlo point estimate of the exact two-sided p value
is 0.101, and the corresponding 99% confidence interval is 0.093 to 0.109. More tables
could be sampled from the reference set to further narrow the widths of these intervals.

Pr T* 1.65≥( ) 0.049=
Pr T* 1.65=( )

p2 Pr T* 1.648≥( ) 0.100= =

D y( ) T∗ y( )( )2= y Γ∈

Figure 12.4 Monte Carlo results for Jonckheere-Terpstra test for dose-response data

4 227 9127.000 8827.500 181.760 1.648 .099 .1012
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Linear-by-Linear Association Test
The linear-by-linear association test orders the tables in Γ according to the linear rank
statistic. Thus, if the observed table is x, the unnormalized test statistic is

Equation 12.9



166 Chapter 12

The upper portion of the output displays the asymptotic two-sided p value. The p values
are evaluated as tail areas under a chi-square distribution. The standardized value for the
linear-by-linear association test is . This value is normally distributed with
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The Monte Carlo point estimate of the exact one-sided p value is 0.046, which is very
close to the exact one-sided p value of 0.044. Moreover, the Monte Carlo method also
produces a confidence interval for the exact p value. Thus, although this point estimate
might change slightly if you resample with a different starting seed or a different random
number generator, you can be 99% confident that the exact p 
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Figure 12.8 shows the results of the linear-by-linear association test on these scores.

Observe now that the one-sided asymptotic p value is 0.042, , which is statis-
tically significant, but that the one-sided exact p value (0.050) is not statistically signif-
icant at the 5% level. Inference based on asymptotic theory, with a rigid 5% criterion for
claiming statistical significance, would therefore lead to an incorrect conclusion.

Figure 12.8 Results of linear-by-linear association test on adjusted data
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Measures of Association

This chapter introduces some definitions and notation needed to estimate, test, and
interpret the various measures of association computed by Exact Tests. The methods
discussed here provide the necessary background for the statistical procedures
described in Chapter 14, Chapter 15, and Chapter 16.

Technically, there is a distinction between an actual measure of association, regarded
as a population parameter, and its estimate from a finite sample. For example, the
correlation coefficient ρ is a population parameter in a bivariate normal distribution,
whereas Pearson’s product moment coefficient R is an estimate of ρ, based on a finite
sample from this distribution. However, in this chapter, the term “measure of association”
will be used to refer to either a population parameter or an estimate from a finite sample,
and it will be clear from the context which is intended. In particular, the formulas for the
various measures of association discussed in this chapter refer to sample estimates and
their associated standard errors, not to underlying population parameters. Formulas are
not provided for the actual population parameters. For each measure of association, the
following statistics are provided:
• A point estimate for the measure of association (most often this will be the maxi-

mum-likelihood estimate [MLE]).
• Its asymptotic standard error, evaluated at the maximum-likelihood estimate

(ASE1).
• Asymptotic two-sided p values for testing the null hypothesis that the measure of

association is 0.
• Exact two-sided p values (possibly up to Monte Carlo accuracy) for testing the null

hypothesis that the measure of association is 0.

Representing Data in Crosstabular Form
All of the measures of association considered in this book are defined from data that
can be represented in the form of the  contingency table, as shown in Table 13.1.r c×

13
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This  table is formed from N observations cross-classified into row categories (r)
and column categories (c), with  of the observations falling into row category i and
column category j. Such a table is appropriate for categorical data. For example, the row
classification might consist of three discrete age categories (young, middle-aged, and
elderly), and the column classification might consist of three discrete annual income cat-
egories ($25,000–50,000, $50,000–75000, and $75,000–100,000). These are examples
of ordered categories. Alternatively, one or both of the discrete categories might be nom-
inal. For example, the row classification might consist of three cities (Boston, New
York, and Philadelphia). In this chapter, you will define various measures of association
based on crosstabulations such as the one shown in Table 13.1.

Measures of association are also defined on data sets generated from continuous
bivariate distributions. Although such data sets are not naturally represented as
crosstabulations, it is neverthe
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Point Estimates
Maximum-likelihood theory is used to estimate each meas
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tion. The exact two-sided p value is obtained by Equation 9.4, with  substituted for
. Thus,

Equation 13.2

An equivalent definition of the two-sided p value is

Equation 13.3

This definition expresses the exact two-sided p value as a sum of two exact one-sided p
values, one in the left tail and the other in the right tail of the exact distribution of .
Exact permutational distributions are not usually symmetric, so the areas in the two tails
may not be equal. This is an important distinction between exact and asymptotic p
values. In the latter case, the exact two-sided p value is always double the exact one-
sided p value by the symmetry of the asymptotic normal distribution of . 

Monte Carlo P Values
Monte Carlo p values are very close approximations to corresponding exact p values but
have the advantage that they are much easier to compute. These p values are computed
by the methods described in Chapter 9 in “Monte Carlo Two-Sided P Values” on p. 143.
For nominal data, only two-sided p values are defined. The Monte Carlo estimate of the
exact two-sided p value is obtained by Equation 9.6, with an associated confidence
interval given by Equation 9.8. In this computation, the critical region  is defined by

Equation 13.4

For measures of association based on ordinal data and for measures of agreement, two-
sided p values are defined. For two-sided p values,

Equation 13.5

Asymptotic P Values
For measures of association based on nominal data, only two-sided p values are defined.
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For measures of association on ordinal data and for measures of agreement, the asymptotic
standard error of the maximum-likelihood estimate under the null hypothesis (ASE0) is
obtained. Then asymptotic one- and two-sided p values are obtained by using the fact that the
ratio  converges to a standard normal distribution.M x( ) ASEO⁄
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Measures of Association for 
Ordinal Data

Exact Tests provides the following measures of association between pairs of ordinal
variables: Pearson’s product-moment correlation coefficient, Spearman’s rank-order
correlation coefficient, Kendall’s tau coefficient, Somers’ d coefficient, and the gamma
coefficient. All of these measures of association range between –1 and +1, with 0
signifying no association, –1 signifying perfect negative association, and +1 signifying
perfect positive association. One other measure of association mentioned in this chapter
is Kendall’s W, also known as Kendall’s coefficient of concordance. This test is
discussed in detail in Chapter 7.

Available Measures
Table 14.1 shows the available measures of association, the procedure from which each
can be obtained, and a bibliographical reference for each test.

Table 14.1 Available tests

Measure of Association Procedure Reference

Pearson’s product-moment 
correlation

Crosstabs Siegel and Castellan (1988)

Spearman’s rank-order 
correlation

Crosstabs Siegel and Castellan (1988)

Kendall’s W Nonparametric Tests: Tests for 
Several Related Samples

Conover (1975)

Kendall’s tau-b, Kendall’s tau-c,
and Somers’ d

Crosstabs Siegel and Castellan (1988)

Gamma coefficient Crosstabs Siegel and Castellan (1988)

14
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Pearson’s Product-Moment Correlation Coefficient
Let A and B be a pair of correlated random variables. Suppose you observe N pairs of
observations  and crosstabulate them into the 
contingency table displayed as Table 13.1, in which the ’s are the distinct values
assumed by A and the ’s are the distinct values assumed by B. When the data follow
a bivariate normal distribution, the appropriate measure of association is the correlation
coefficient, ρ, between A and B. This parameter is estimated by Pearson’s product-
moment correlation coefficient, shown in Equation 14.1. In this equation,  represents
the marginal row total and  represents the marginal column total.

Equation 14.1

where

Equation 14.2

The formulas for the asymptotic standard errors are fairly complicated. These formulas
are discussed in the algorithms manual available on the Manuals CD and also available
by selecting 
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The correlation coefficient has a point estimate of . The exact two-sided p
value is 0.037 and indicates that the correlation coefficient is significantly different from
0. The corresponding asymptotic two-sided p value is 0.058 and fails to demonstrate
statistical significance at the 5% level for this small data set.

It should be noted that the computational limits for exact inference are reached rather
quickly for Pearson’s product-moment correlation coefficient with continuous data. By
the time , the Monte Carlo option should be used rather than the exact option.
Consider, for example, the complete authoritarianism data set of 12 observations (Siegel
and Castellan, 1988) shown in Figure 14.3.

For this data set, the exact two-sided p value, shown in Figure 14.5, is 0.001,
approximately half the asymptotic two-sided p value of 0.003. However, it may be time-
consuming to perform the exact calculation. In contrast, the Monte Carlo p value based
on 10,000 samples from the data set produces a significance estimate of 0.002,
practically the same as the exact p value. The 99% confidence interval for the exact p

Figure 14.2 Pearson’s product-moment correlation coefficient for subset of social status 
striving data
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value is (0.001, 0.003). The Monte Carlo output is shown in Figure 14.4, and the
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for . Once these transformations are made, all of the remaining
calculations for the point estimate (R), the standard error (ASE1), the confidence
interval, the asymptotic p value, and the exact p value are identical to corresponding
ones for Pearson’s product-moment correlation coefficient.

Consider, for example, the data displayed in Figure 13.1. Figure 14.6 displays these
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defines the number of pairs of observations that are concordant relative to the observa-
tions in cell (i, j), and the formula

Equation 14.7

defines the number of pairs of observations that are discordant relative to the observa-
tions in cell (i, j). Thus, the total number of concordant pairs in the entire data set is

Equation 14.8

and the total number of discordant pairs in the entire data set is

Equation 14.9

Kendall’s tau and Somers’ d and their various variants are functions of . Thus,
although their respective point estimates and standard errors differ, they all produce the
same p values. Next, these measures of association will be defined and their use
illustrated through a numerical example.

Kendall’s Tau-b and Kendall’s Tau-c
Kendall’s tau coefficient has three variants, , , and . You first specify estimators
and associated asymptotic standard errors for these three variants. For a discussion of
the criteria for selecting one variant over another, see Gibbons (1993). The  and 
variants were developed to correct for ties and for categorical data. 

Kendall’s  coefficient is estimated by 

Equation 14.10

where 

Equation 14.11
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and 

Equation 14.12

Kendall’s  coefficient is estimated by

Equation 14.13

where . 

Somers’ d
Somers’ d coefficient is a useful measure of association between two asymmetrically
related ordinal variables, where one of the two variables is regarded as independent and
the other as dependent. See Siegel and Castellan (1988) for a discussion of this
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Example: Smoking Habit Data
Observe that all variants of Kendall’s tau and Somers’ d are functions of . They
differ only in how they are standardized. Thus, although their point estimates and
asymptotic standard errors vary, the exact and asymptotic p values for testing the null
hypothesis that there is no association are invariant across all these measures. Cnl1s
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Although all of these coefficients have different point estimates, their sampling
distributions are equivalent, thus leading to a common p value. The exact two-sided p
value for testing the null hypothesis that there is no association is 0.0226, and the
corresponding asymptotic two-sided p value is 0.0177.

As the number of observations grows, it becomes increasingly difficult to compute
exact p
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Figure 14.13 shows the Monte Carlo results for the full data set. The Monte Carlo sample
size was 10,000. 

It is clear that a strong correlation exists between the duration and status of the smoking
habit. The exact two-sided p value for testing the null hypothesis that there is no
correlation is at most 0.0003 with 95% confidence.

Figure 14.13 Monte Carlo results for Kendall’s tau and Somers’ d for full smoking data

Directional Measures
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Gamma Coefficient
The gamma coefficient is yet another measure of association between two ordinal
variables. It was first discussed extensively by Goodman and Kruskal (1963). It is an
alternative to Kendall’s tau and Somers’ d for ordered categorical variables. Like these
measures, it is defined in terms of the difference between concordant and discordant
pairs, and so does not require the variables to take on actual numerical values. Using the
notation developed in the previous section, the gamma coefficient is estimated by

Equation 14.17

If the data contain no ties, this definition of gamma will yield the same exact and
asymptotic p values as Kendall’s tau and Somers’ d. In general, however, inference based
on gamma can differ from inference based on the latter two coefficients. You can now
analyze the small data set of cessation and smoking habit displayed in Figure 14.10. Figure
14.14 displays point and interval estimates of gamma along with exact and asymptotic p
values for testing the null hypothesis that there is no association. 

The gamma coefficient is estimated as 0.345. The exact two-sided p value for testing the
null hypothesis that there is no association is 0.024. 

As the number of observations grows, it becomes increasingly difficult to compute
exact p values, and the Monte Carlo option is a better choice. Figure 14.15 shows the
Monte Carlo results for the full cessation and smoking habit data set shown in Figure
14.12. The Monte Carlo sample size was 10,000.

G P Q–

P Q+
--------------=

Figure 14.14 Gamma coefficient for subset of smoking data 
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It is clear that a strong correlation exists between the duration and status of the smoking
habit. The exact two-sided p value for testing the null hypothesis that there is no
correlation is at most 0.0005 with 99% confidence.

Figure 14.15 Monte Carlo results for gamma coefficient for full smoking data 
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of these measures have an identical two-sided p value for testing the null hypothesis that
there is no association, which is the same as the Pearson chi-square p value and which
is based on the distribution of . Exact Tests reports both the asymptotic and exact
p values. 

The formulas for computing the three contingency coefficients are given below. The
formula for each measure involves taking the square root of a function of . The
positive root is always selected. For a more detailed discussion of these measures of as-
sociation, see Liebetrau (1983).

The phi contingency coefficient is given by the formula

Equation 15.1

The minimum value assumed by  is 0, signifying no association. However, its upper
bound is not fixed but depends on the dimensions of the contingency table. Therefore,
it is not a very suitable measure for arbitrary  tables. For the special case of the

 table, Gibbons (1985) shows that  is identical to the absolute value of Kendall’s
 coefficient and is evaluated by the formula

Equation 15.2

Notice from Equation 15.2 that, for the  contingency table,  could be either
positive or negative, which implies a positive or negative association in the  table.

The Pearson contingency coefficient is given by the formula

 Equation 15.3

This contingency coefficient assumes a minimum value of 0, signifying no association.
It is bounded from above by 1, signifying perfect association. However, the maximum
value attainable by CC is , where . Thus, the range of this
contingency coefficient still depends on the dimensions of the  table. Cramér’s V
coefficient ranges between 0 and 1, with 0 signifying no association and 1 signifying
perfect association. It is given by

Equation 15.4

Exact Tests reports the point estimate of the contingency coefficient. The formulas for
these asymptotic standard errors are fairly complicated. These formulas are described in
the algorithms manual available on the Manuals CD and also available by selecting
Algorithms
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These measures may be used to analyze an unordered contingency table given in Sie-
gel and Castellan (1988). The data consist of a crosstabulation of three possible responses
(completed, declined, no response) to a questionnaire concerning the financial account-
ing standards used by six different organizations responsible for maintaining such stan-
dards. These organizations are identified only by their initials (AAA, AICPA, FAF, FASB,
FEI, and NAA). The crosstabulated data are shown in Figure 15.1.

First, these data are analyzed using only the first three columns of Figure 15.1. For this
subset of the data, Figure 15.2 shows the results for the contingency coefficients. The
exact two-sided p value for testing the null hypothesis that there is no association is also
reported. Its value is 0.090, slightly lower than the asymptotic p value of 0.092. 

The next analysis uses the full data set, which consists of all six columns of Figure 15.1.
This data set is too large to compute the exact p value. However, a 99% confidence in-
terval on the exact p value based on 10,000 Monte Carlo samples is easily obtained. The
results are shown in Figure 15.3.

Figure 15.1 Crosstabulation of response to survey and finance organization

Count

8 8 3 11 17 2

2 5 1 2
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The p value for testing the null hypothesis that there is no association is at most 0.0005
with 99% confidence, which implies that the row and column classifications are not
independent.

Proportional Reduction in Prediction Error
In regression problems involving continuous data, the coefficient of determination (or 
statistic) is often used to measure the proportion of the total variation attributable to the
explanatory variable. It would be useful to provide an analog of this index for nominal cat-
egorical data. Two measures of association are available for this purpose. One is Goodman
and Kruskal’s tau, and the other is the uncertainty coefficient. Both measure the proportion
of variation in the row variable that can be attributed to the column variable.

Goodman and Kruskal’s Tau
Goodman and Kruskal’s tau coefficient for measuring the proportion of the variation in
the row variable attributable to the column variable is estimated by

Equation 15.5

Figure 15.3 Monte Carlo results for phi and Cramér’s V
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This coefficient ranges between 0 and 1, with 0 implying no reduction in row variance
when the column category is known, and 1 imp
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First, Goodman and Kruskal’s tau is estimated, a confidence interval is obtained for it,
and the null hypothesis that there is no association in the population is tested. The results
are shown in Figure 15.5.

The observed value of Goodman and Kruskal’s tau with ally, 0.013, is rather small and
leads to the conclusion that 1.3% of the variation in choice of preferred ally is explained
by knowing a person’s party preference. The exact p value, 0.045, implies that the null
hypothesis that there is no association can be rejected at the 5% level. In other words,
the small amount of explained variation is real, not due to sampling error.

Next, the uncertainty coefficient is estimated, a confidence interval is obtained for it,
and the null hypothesis that there is no association in the population is tested. The results
are shown in Figure 15.6.

Count

225 3

53 1

206 12

Right

Center

Left

Party Preference
U.S. U.S.S.R.

Preferred Cold War
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Once again, the observed value of the uncertainty coefficient with ally, 0.007, is ex-
tremely small. However, the exact two-sided p value, 0.034, is statistically significant
and indicates that the measure is indeed greater than 0.

Figure 15.6 Uncertainty coefficient for party preference and preferred cold war ally data
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Measures of Agreement

This chapter discusses kappa, a measure used to assess the level of agreement between
two observers classifying a sample of objects on the same categorical scale. The joint
ratings of the observers are displayed on a square  contingency table such as Table
13.1. Kappa (see Agresti, 1990) can be obtained using the Crosstabs procedure. 

Kappa
The kappa coefficient is defined on a square  contingency table. It is estimated by

Equation 16.1

Notice that the kappa statistic does not depend on the off-diagonal elements of the
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The results for the kappa statistic are shown in Figure 16.2. 

The value of kappa is estimated at . The positive sign on the kappa statistic
implies that the agreement is positive. The exact two-sided p value of 0.048 is
significant; thus, you can reject the null hypothesis that there is no agreement. Notice,
however, that the asymptotic two-sided p value is not very accurate for this small data
set. It is less than one half of the exact p value.

The same analysis conducted with the full data set of 72 observations is tabulated in
Figure 16.3.

Figure 16.1 Crosstabulation of student teachers rated by supervisors (partial data)
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For this larger data set, it is more efficient to perform the Monte Carlo inference rather
than the exact inference. Figure 16.4 shows the results based on 10,000 Monte Carlo
samples.

In the full data set, the kappa statistic has a smaller value, 0.362. However, due to the
larger sample size this observed statistic is highly significant, with a two-sided p value
guaranteed to be less than 0.0005 with 99% confidence.

Figure 16.4 Monte Carlo results for student teacher ratings data

.362 .091 4.329 .000 .00001 .0000 .0005

72
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NPAR TESTS

Exact Tests Syntax

The METHOD subcommand allows you to specify the method used to calculate significance
levels. The MH subcommand performs the marginal homogeneity test. The J-T subcommand
performs the Jonckheere-Terpstra test. See the Syntax Reference Guide for a complete de-
scription of the full 
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5 minutes. If a test exceeds a time limit of 30 minutes, it is recommended that
you use the Monte Carlo, rather than the exact, method.

MH Subcommand

NPAR TESTS /MH=varlist [WITH varlist [(PAIRED)]]

MH performs the marginal homogeneity test, which tests whether combinations of values be-
tween two paired ordinal variables are equally likely. The marginal homogeneity test is typ-
ically used in repeated measures situations. This test is an extension of the McNemar test
from binary response to multinomial response. The output shows the number of distinct val-
ues for all test variables, the number of valid off-diagonal cell counts, mean, standard devi-
ation, observed and standardized values of the test statistics, the asymptotic two-tailed
probability for each pair of variables, and, if a /METHOD
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• This example performs the marginal homogeneity test on variable pairs V1 and V2, V1 and
V3, and V2 and V3. The exact p values are estimated using the Monte Carlo sampling method.

J-T Subcommand

NPAR TESTS /J-T=varlist BY variable(value1,value2)

J-T (alias JONCKHEERE-TERPSTRA) performs the Jonckheere-Terpstra test, which tests
whether k independent samples defined by a grouping variable are from the same population.
This test is particularly powerful when the k populations have a natural ordering. The output
shows the number of levels in the grouping variable, the total number of cases, observed,
standardized, mean and standard deviation of the test statistic, the two-tailed asymptotic sig-
nificance, and, if a /METHOD subcommand is specified, one-tailed and two-tailed exact or
Monte Carlo probabilities. 

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses. 

• Every value in the range defined by the pair of values for the grouping variable forms a
group. 

• If the /METHOD subcommand is specified, and the number of populations, k, is greater
than 5, the p value is estimated using the Monte Carlo sampling method. The exact p value
is not available when k exceeds 5.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

• The Jonckheere-Terpstra statistic has approximately a normal distribution. 
• Cases with values other than those in the range specified for the grouping variable are

excluded. 
• The direction of a one-tailed inference is indicated by the sign of the standardized test

statistic. 

Example

NPAR TESTS /J-T=V1 BY V2(0,4)
  /METHOD=EXACT.

• This example performs the Jonckheere-Terpstra test for groups defined by values 0
through 4 of V2. The exact p values are calculated. 
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Appendix B
Algorithms in Exact Tests

Exact Algorithms
An exact p value is computed by enumerating every single outcome in some suitably
defined reference set, identifying all outcomes that are more extreme than the observed
one, and summing their probabilities under the null hypothesis. Although this might
appear to be a formidable computing problem by the time the size of the reference set
exceeds, say, a few million, it is still feasible. Many researchers have worked on this
problem and have developed fast numerical algorithms that enumerate all of the
possible outcomes implicitly rather than explicitly. That is, these algorithms don’t
examine each individual outcome separately. There are ways to identify large numbers
of outcomes at one time and classify them as either more or less extreme than the
observed outcome. A complete collection of reference files for all of these algorithms
is available in the Exact-Stats Mailbase on the Internet. These references can be
accessed through FTP, Gopher, or World Wide Web at the following addresses:
ftp://mailbase.ac.uk/pub/lists/exact-stats/files

gopher://mailbase.ac.uk/Mailbase Lists - A-E/exact-stats/Other 
Files

http://www.mailbase.ac.uk/Mailbase Lists - A-E/exact-
stats/Other Files

One class of algorithms, called network algorithms, was developed by Mehta, Patel, and
their colleagues at the Harvard School of Public Health. These algorithms are referenced
below in chronological order. Many of them have already been incorporated into Exact
Tests, and others will be incorporated into future releases of the software.

Mehta, C. R., and N. R. Patel. 1980. A netw
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Mehta, C. R., N. R. Patel, and R. Gray. 1985. On computing an exact confidence interval for
the common odds ratio in several  contingency tables. Journal of the American Sta-
tistical Association, 80:392, 969–973.

Mehta, C. R., and N. R. Patel. 1986. A hybrid algorithm for Fisher’s exact test in unordered
 contingency tables. Communications in Statistics, 15:2, 387–403.

Mehta, C. R., and N. R. Patel. 1986. FEXACT: A FORTRAN subroutine for Fisher’s exact
test on unordered  contingency tables. ACM Transactions on Mathematical Soft-
ware, 12:2, 154–161.

Hirji, K., C. R. Mehta, and N. R. Patel. 1987. Computing distributions for exact logistic
regression. Journal of the American Statistical Association, 82:400, 1110–1117.

Mehta, C. R., N. R. Patel, and L. J. Wei. 1988. Constructing exact significance tests with
restricted randomization rules. Biometrika, 75:2, 295–302.

Hirji, K., C. R. Mehta, and N. R. Patel. 1988. Exact inference for matched case control
studies. Biometrics, 44:3, 803–814.

Agresti, A., C. R. Mehta, and N. R. Patel. 1990. Exact inference for contingency tables with
ordered categories. Journal of the American Statistical Association, 85:410, 453–458.

Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1992. Exact stratified linear rank tests for
ordered categorical and binary data. Journal of Computational and Graphical Statistics,
1: 21–40.

Mehta, C. R. 1992. An interdisciplinary approach to exact inference for contingency tables.
Statistical Science, 7: 167–170.

Hilton, J., and C. R. Mehta. 1993. Power and sample size calculations for exact conditional
tests with ordered categorical data. Biometrics, 49: 609–616.

Hilton, J., C. R. Mehta, and N. R. Patel. 1994. Exact Smirnov p values using a network
algorithm. Computational Statistics and Data Analysis, 17:4, 351–361.

Mehta, C. R., N. R. Patel, P. Senchaudhuri, and A. A. Tsiatis. 1994. Exact permutational tests
for group sequential clinical trials. Biometrics, 50:4, 1042–1053.

Monte Carlo Algorithms
Monte Carlo algorithms solve a slightly easier computational problem. They do not
attempt to enumerate all of the members of the reference set. Instead, they estimate the
p value by taking a random sample from the reference set. The Monte Carlo algorithms
in Exact Tests make use of ideas in the following papers (in chronological order):

Agresti, A., D. Wackerly, and J. M. Boyett. 1979. Exact conditional tests for cross-classifi-
cations: Approximations of attained significance levels. Psychometrika, 44: 75–83.

Patefield, W. M. 1981. An efficient method of generating  tables with given row and
column totals. (Algorithm AS 159.) Applied Statistics, 30: 91–97.

Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1988. Importance sampling for estimating
exact probabilities in permutational inference. Journal of the American Statistical Asso-
ciation, 83:404, 999–1005.

Senchaudhuri, P., C. R. Mehta, and N. R. Patel. 1995. Estimating exact p values by the method
of control variates, or Monte Carlo rescue. Journal of American Statistical Association.

2 2×

r c×
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Appendix C
Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other 
countries. Consult your local IBM representative for information on the products and 
services currently available in your area. Any reference to an IBM product, program, or 
service is not intended to state or imply that only that IBM product, program, or service may 
be used. Any functionally equivalent product, program, or service that does not infringe any 
IBM intellectual property right may be used instead. However, it is the user's responsibility 
to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in 
this document. The furnishing of this document does not grant you any license to these 
patents. You can send license inquiries, in writing, to: 

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A. 

For license inquiries regarding double-byte character set (DBCS) information, contact the 
IBM Intellectual Property Department in your 
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Information concerning non-IBM products was obtained from the suppliers of those 
products, their published announcements or other publicly available sources. IBM has not 
tested those products and canno
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Index

asymptotic method, 1
asymptotic one-sided p value

K independent samples, 122, 129, 131
asymptotic one-sided p value

Jonckheere-Terpstra test, 159
Mann-Whitney test, 84

asymptotic p value, 12
assumptions, 12
defined, 16
measures of association, 169
obtaining, 8
Pearson’s chi-square, 16
when to use, 16, 29–37

asymptotic two-sided p value
K independent samples, 122

asymptotic two-sided p value
Jonckheere-Terpstra test, 159
K related samples, 101
Mann-Whitney test, 84
McNemar test, 69
r x c tables, 140
sign test, 62
Wilcoxon signed-ranks, 62

binary data
one-sample test, 49–55

binomial test, 49–50
example: pilot study for new drug, 50

bivariate data
measures of association, 166–167

blocked comparisons, 95
BY (keyword)

NPAR TESTS command, 202

categorical data
assumptions, 12

categorical variables, 135
CIN (keyword)

CROSSTABS command, 199
NPAR TESTS command, 200

class variables, 135
Cochran’s Q test, 108–111

example:cross-over clinical trial, 109–111
when to use, 96

Cohen’s kappa. See Kappa
confidence levels

specifying, 8
contingency coefficients

measures of association, 185, 185–188
contingency tables. See r x c contingency tables
continuous data

assumptions, 12
continuous variables, 135
correlations

Pearson’s product-moment correlation coefficient, 
172–174

Spearman’s rank-order correlation coefficient, 
174–176

Cramer’s V
example, 187–188
measures of association, 185–188

CROSSTABS (command), 199–??
new syntax, 199

Crosstabs procedure, 199
asymptotic p value, 8
confidence levels, 8
contingency coefficients, 185
exact pvalue, 9
exact statistics, 7–9
Fisher’s exact test, 141
gamma, 171
Goodman and Kruskal’s tau, 185
Kendall’s tau-b, 171
Kendall’s tau-c, 171
likelihood-ratio test, 141
linear-by-linear association test, 155
Monte Carlo p value, 8
Pearson chi-square test, 141
Pearson’s product moment correlation coefficient, 

171
samples, 8
Somers’ d, 171
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Spearman’s rank-order correlation coefficient, 171
time limit, 9
uncertainty coefficient, 185

crosstabulated data
measures of association, 165–167

crosstabulation, 199
See also Crosstabs procedure

data sets
small, 30
sparse, 36–37
tied, 31–34
unbalanced, 35

doubly ordered contingency tables, 135
doubly ordered contingency tables. See alsor x c 

contingency tables

EXACT (keyword)
CROSSTABS command, 199
NPAR TESTS command, 200

exact method, 1–3
exact one-sided p value

K independent samples, 134
exact one-sided p value

Jonckheere-Terpstra test, 159
linear-by-linear association test, 162
Mann-Whitney test, 82
McNemar test, 69
runs test, 92

exact p value, 12, 16
defined, 1
example: fire figher data, 1–3
obtaining, 9
r x c tables, 136
when to use, 24

exact statistics
obtaining, 7–9

exact tests
memory limits, 9
setting time limit, 9
when to use, 5

exact two-sided p value
K independent samples, 134
median test, 124

exact two-sided p value
Jonckheere-Terpstra test, 160

K related samples, 99
Kolmogorov-Smirnov, 88
linear-by-linear assocation test, 162
Mann-Whitney test, 82
McNemar test, 69
measures of agreement, 168
nominal data, 168
ordinal data, 168
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K independent samples tests, 113–134
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median test, 122–127
example: hematologic toxicity data, 125–127
when to use, 115

memory limits
exact tests, 9

METHOD (subcommand)
CROSSTABS command, 199
NPAR TESTS command, 200–201, 202

MH (subcommand)
NPAR TESTS command, 201–202

Monte Carlo method, 3–4
defined, 3
example:fire figher data, 4
random number seed, 9–10

Monte Carlo one-sided p value
sign test, 63
Wilcoxon signed-ranks test, 63

Monte Carlo p value
obtaining, 8
when to use, 24–29

Monte Carlo p values
measures of association, 169

Monte Carlo two-sided p value
K independent samples, 120
median test, 124

Monte Carlo two-sided p value
K related samples, 100
Kolmogorov-Smirnov, 88
Mann-Whitney test, 83
r x c tables, 139
sign test, 64
Wilcoxon signed-ranks test, 64

nominal data
contingency coefficients, 185–188
Cramer’s V, 185–188
exact two-sided p values, 168
Goodman and Kruskal’s tau, 188–191
phi, 185–188
proportional reduction in prediction error, 188–191
uncertainty coefficient, 189–191

nominal variables, 135
nonparametric tests

assumptions, 12
asymptotic p value, 8
binomial, 49
Cochran’s Q, 95

confidence levels, 8
exact pvalue, 9
exact statistics, 7–9
Friedman’s, 95
Jonckheere-Terpstra test, 114, 155
Kendall’s W, 95
Kolmogorov-Smirnov, 75
Kruskal-Wallis, 114, 149
Mann-Whitney test, 75
marginal homogeneity, 57
McNemar, 57
median test, 114
Monte Carlo p value, 8
new syntax, 200
new tests, 9
runs, 49, 75
samples, 8
sign, 57
time limit, 9
two-related samples, 57
Wald-Wolfowitz runs test, 75
Wilcoxon signed-ranks, 57

NPAR TESTS (command), 200–202
J-T subcommand, 202
METHOD subcommand, 200–201
MH subcommand, 201–202
new syntax, 200
pairing variables, 201

observed r x c tables, 135–136
computing exact p value for, 136

one-sample tests
binary data, 49–55
runs test, 51–55

one-sided p value
K independent samples, 120, 122

one-sided p value
binomial test, 50
Mann-Whitney test, 82, 84
McNemar test, 69
runs test, 92
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Kendall’s tau, 177–182
measures of association, 171–184
Pearson’s product-moment correlation coefficient, 

172–174
Somers’ d, 177–182
Spearman’s rank-order correlation coefficient, 

174–176

p value
choosing a method, 22–37
hypothesis testing, 11–14
in two-sample tests, 80
measures of association, 168–170

p value. See also one-sided p value
p value. See also two-sided p value.
PAIRED (keyword)

NPAR TESTS command, 201
paired samples, 57–73

when to use each test, 58
Pearson chi-square

example: 3 x 4 table, 14–18
example: fire figher data, 14–18
example: sparse contingency table, 12–14
example: sports activity data, 36–37

Pearson chi-square test, 138, 144–145
when to use, 141

Pearson’s product-moment correlation coefficient
example:social striving data, 30, 172–174
measures of association, 172–174

phi
example, 187–188
measures of association, 185–188

point estimates
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two-sample tests
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